Cargando…
NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures
Precision medicine relies on the identification of robust disease and risk factor signatures from omics data. However, current knowledge-driven approaches may overlook novel or unexpected phenomena due to the inherent biases in biological knowledge. In this study, we present a data-driven signature...
Autores principales: | Martínez-Enguita, David, Dwivedi, Sanjiv K, Jörnsten, Rebecka, Gustafsson, Mika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516364/ https://www.ncbi.nlm.nih.gov/pubmed/37587790 http://dx.doi.org/10.1093/bib/bbad293 |
Ejemplares similares
-
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023) -
Computational prediction of species-specific yeast DNA replication origin via iterative feature representation
por: Manavalan, Balachandran, et al.
Publicado: (2020) -
Zero-shot-capable identification of phage–host relationships with whole-genome sequence representation by contrastive learning
por: Zhang, Yao-zhong, et al.
Publicado: (2023) -
Deciphering signatures of natural selection via deep learning
por: Qin, Xinghu, et al.
Publicado: (2022) -
Validation of transcriptome signature reversion for drug repurposing in oncology
por: Koudijs, Karel K M, et al.
Publicado: (2022)