Cargando…
UNMF: a unified nonnegative matrix factorization for multi-dimensional omics data
Factor analysis, ranging from principal component analysis to nonnegative matrix factorization, represents a foremost approach in analyzing multi-dimensional data to extract valuable patterns, and is increasingly being applied in the context of multi-dimensional omics datasets represented in tensor...
Autores principales: | Abe, Ko, Shimamura, Teppei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516365/ https://www.ncbi.nlm.nih.gov/pubmed/37478378 http://dx.doi.org/10.1093/bib/bbad253 |
Ejemplares similares
-
Computationally scalable regression modeling for ultrahigh-dimensional omics data with ParProx
por: Ko, Seyoon, et al.
Publicado: (2021) -
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
por: Wang, Xiaqiong, et al.
Publicado: (2022) -
Multi-omics regulatory network inference in the presence of missing data
por: Henao, Juan D, et al.
Publicado: (2023) -
Integrating multi-omics summary data using a Mendelian randomization framework
por: Jin, Chong, et al.
Publicado: (2022) -
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
por: Withnell, Eloise, et al.
Publicado: (2021)