Cargando…

Long-term coral microbial community acclimatization is associated with coral survival in a changing climate

The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communitie...

Descripción completa

Detalles Bibliográficos
Autores principales: Price, James T., McLachlan, Rowan H., Jury, Christopher P., Toonen, Robert J., Wilkins, Michael J., Grottoli, Andréa G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516427/
https://www.ncbi.nlm.nih.gov/pubmed/37738222
http://dx.doi.org/10.1371/journal.pone.0291503
_version_ 1785109125793841152
author Price, James T.
McLachlan, Rowan H.
Jury, Christopher P.
Toonen, Robert J.
Wilkins, Michael J.
Grottoli, Andréa G.
author_facet Price, James T.
McLachlan, Rowan H.
Jury, Christopher P.
Toonen, Robert J.
Wilkins, Michael J.
Grottoli, Andréa G.
author_sort Price, James T.
collection PubMed
description The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa, Porites lobata, Montipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33–67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0–10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to M. capitata and P. acuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, M. capitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.
format Online
Article
Text
id pubmed-10516427
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-105164272023-09-23 Long-term coral microbial community acclimatization is associated with coral survival in a changing climate Price, James T. McLachlan, Rowan H. Jury, Christopher P. Toonen, Robert J. Wilkins, Michael J. Grottoli, Andréa G. PLoS One Research Article The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa, Porites lobata, Montipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33–67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0–10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to M. capitata and P. acuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, M. capitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition. Public Library of Science 2023-09-22 /pmc/articles/PMC10516427/ /pubmed/37738222 http://dx.doi.org/10.1371/journal.pone.0291503 Text en © 2023 Price et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Price, James T.
McLachlan, Rowan H.
Jury, Christopher P.
Toonen, Robert J.
Wilkins, Michael J.
Grottoli, Andréa G.
Long-term coral microbial community acclimatization is associated with coral survival in a changing climate
title Long-term coral microbial community acclimatization is associated with coral survival in a changing climate
title_full Long-term coral microbial community acclimatization is associated with coral survival in a changing climate
title_fullStr Long-term coral microbial community acclimatization is associated with coral survival in a changing climate
title_full_unstemmed Long-term coral microbial community acclimatization is associated with coral survival in a changing climate
title_short Long-term coral microbial community acclimatization is associated with coral survival in a changing climate
title_sort long-term coral microbial community acclimatization is associated with coral survival in a changing climate
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516427/
https://www.ncbi.nlm.nih.gov/pubmed/37738222
http://dx.doi.org/10.1371/journal.pone.0291503
work_keys_str_mv AT pricejamest longtermcoralmicrobialcommunityacclimatizationisassociatedwithcoralsurvivalinachangingclimate
AT mclachlanrowanh longtermcoralmicrobialcommunityacclimatizationisassociatedwithcoralsurvivalinachangingclimate
AT jurychristopherp longtermcoralmicrobialcommunityacclimatizationisassociatedwithcoralsurvivalinachangingclimate
AT toonenrobertj longtermcoralmicrobialcommunityacclimatizationisassociatedwithcoralsurvivalinachangingclimate
AT wilkinsmichaelj longtermcoralmicrobialcommunityacclimatizationisassociatedwithcoralsurvivalinachangingclimate
AT grottoliandreag longtermcoralmicrobialcommunityacclimatizationisassociatedwithcoralsurvivalinachangingclimate