Cargando…
DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction
MOTIVATION: Computationally predicting major histocompatibility complex class I (MHC-I) peptide binding affinity is an important problem in immunological bioinformatics, which is also crucial for the identification of neoantigens for personalized therapeutic cancer vaccines. Recent cutting-edge deep...
Autores principales: | Qu, Wei, You, Ronghui, Mamitsuka, Hiroshi, Zhu, Shanfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516514/ https://www.ncbi.nlm.nih.gov/pubmed/37669154 http://dx.doi.org/10.1093/bioinformatics/btad551 |
Ejemplares similares
-
DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction
por: You, Ronghui, et al.
Publicado: (2022) -
MetaMHC: a meta approach to predict peptides binding to MHC molecules
por: Hu, Xihao, et al.
Publicado: (2010) -
DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
por: You, Ronghui, et al.
Publicado: (2021) -
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
por: Peng, Shengwen, et al.
Publicado: (2016) -
Partial Dissociation of Truncated Peptides Influences the Structural Dynamics of the MHCI Binding Groove
por: Fisette, Olivier, et al.
Publicado: (2017)