Cargando…
DataDTA: a multi-feature and dual-interaction aggregation framework for drug–target binding affinity prediction
MOTIVATION: Accurate prediction of drug–target binding affinity (DTA) is crucial for drug discovery. The increase in the publication of large-scale DTA datasets enables the development of various computational methods for DTA prediction. Numerous deep learning-based methods have been proposed to pre...
Autores principales: | Zhu, Yan, Zhao, Lingling, Wen, Naifeng, Wang, Junjie, Wang, Chunyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516524/ https://www.ncbi.nlm.nih.gov/pubmed/37688568 http://dx.doi.org/10.1093/bioinformatics/btad560 |
Ejemplares similares
-
ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding
por: Wang, Junjie, et al.
Publicado: (2022) -
Modeling DTA by Combining Multiple-Instance Learning with a Private-Public Mechanism
por: Wang, Chunyu, et al.
Publicado: (2022) -
GANsDTA: Predicting Drug-Target Binding Affinity Using GANs
por: Zhao, Lingling, et al.
Publicado: (2020) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018) -
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2023)