Cargando…

Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit

AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolk, Maarten Z H, Ruipérez-Campillo, Samuel, Deb, Brototo, Bekkers, Erik J, Allaart, Cornelis P, Rogers, Albert J, Van Der Lingen, Anne-Lotte C J, Alvarez Florez, Laura, Isgum, Ivana, De Vos, Bob D, Clopton, Paul, Wilde, Arthur A M, Knops, Reinoud E, Narayan, Sanjiv M, Tjong, Fleur V Y
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516624/
https://www.ncbi.nlm.nih.gov/pubmed/37712675
http://dx.doi.org/10.1093/europace/euad271
_version_ 1785109165426868224
author Kolk, Maarten Z H
Ruipérez-Campillo, Samuel
Deb, Brototo
Bekkers, Erik J
Allaart, Cornelis P
Rogers, Albert J
Van Der Lingen, Anne-Lotte C J
Alvarez Florez, Laura
Isgum, Ivana
De Vos, Bob D
Clopton, Paul
Wilde, Arthur A M
Knops, Reinoud E
Narayan, Sanjiv M
Tjong, Fleur V Y
author_facet Kolk, Maarten Z H
Ruipérez-Campillo, Samuel
Deb, Brototo
Bekkers, Erik J
Allaart, Cornelis P
Rogers, Albert J
Van Der Lingen, Anne-Lotte C J
Alvarez Florez, Laura
Isgum, Ivana
De Vos, Bob D
Clopton, Paul
Wilde, Arthur A M
Knops, Reinoud E
Narayan, Sanjiv M
Tjong, Fleur V Y
author_sort Kolk, Maarten Z H
collection PubMed
description AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable cardioverter-defibrillator (ICD) implantation can be improved by ML models that combine clinical variables with 12-lead electrocardiograms (ECG) time-series features. METHODS AND RESULTS: A multicentre study of 1010 patients (64.9 ± 10.8 years, 26.8% female) with ischaemic, dilated, or non-ischaemic cardiomyopathy, and LVEF ≤ 35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD in two academic hospitals was performed. For each patient, a raw 12-lead, 10-s ECG was obtained within 90 days before ICD implantation, and clinical details were collected. Supervised ML models were trained and validated on a development cohort (n = 550) from Hospital A to predict ICD non-arrhythmic mortality at three-year follow-up (i.e. mortality without prior appropriate ICD-therapy). Model performance was evaluated on an external patient cohort from Hospital B (n = 460). At three-year follow-up, 16.0% of patients had died, with 72.8% meeting criteria for non-arrhythmic mortality. Extreme gradient boosting models identified patients with non-arrhythmic mortality with an area under the receiver operating characteristic curve (AUROC) of 0.90 [95% confidence intervals (CI) 0.80–1.00] during internal validation. In the external cohort, the AUROC was 0.79 (95% CI 0.75–0.84). CONCLUSIONS: ML models combining ECG time-series features and clinical variables were able to predict non-arrhythmic mortality within three years after device implantation in a primary prevention population, with robust performance in an independent cohort.
format Online
Article
Text
id pubmed-10516624
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-105166242023-09-23 Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit Kolk, Maarten Z H Ruipérez-Campillo, Samuel Deb, Brototo Bekkers, Erik J Allaart, Cornelis P Rogers, Albert J Van Der Lingen, Anne-Lotte C J Alvarez Florez, Laura Isgum, Ivana De Vos, Bob D Clopton, Paul Wilde, Arthur A M Knops, Reinoud E Narayan, Sanjiv M Tjong, Fleur V Y Europace Clinical Research AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable cardioverter-defibrillator (ICD) implantation can be improved by ML models that combine clinical variables with 12-lead electrocardiograms (ECG) time-series features. METHODS AND RESULTS: A multicentre study of 1010 patients (64.9 ± 10.8 years, 26.8% female) with ischaemic, dilated, or non-ischaemic cardiomyopathy, and LVEF ≤ 35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD in two academic hospitals was performed. For each patient, a raw 12-lead, 10-s ECG was obtained within 90 days before ICD implantation, and clinical details were collected. Supervised ML models were trained and validated on a development cohort (n = 550) from Hospital A to predict ICD non-arrhythmic mortality at three-year follow-up (i.e. mortality without prior appropriate ICD-therapy). Model performance was evaluated on an external patient cohort from Hospital B (n = 460). At three-year follow-up, 16.0% of patients had died, with 72.8% meeting criteria for non-arrhythmic mortality. Extreme gradient boosting models identified patients with non-arrhythmic mortality with an area under the receiver operating characteristic curve (AUROC) of 0.90 [95% confidence intervals (CI) 0.80–1.00] during internal validation. In the external cohort, the AUROC was 0.79 (95% CI 0.75–0.84). CONCLUSIONS: ML models combining ECG time-series features and clinical variables were able to predict non-arrhythmic mortality within three years after device implantation in a primary prevention population, with robust performance in an independent cohort. Oxford University Press 2023-09-15 /pmc/articles/PMC10516624/ /pubmed/37712675 http://dx.doi.org/10.1093/europace/euad271 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Clinical Research
Kolk, Maarten Z H
Ruipérez-Campillo, Samuel
Deb, Brototo
Bekkers, Erik J
Allaart, Cornelis P
Rogers, Albert J
Van Der Lingen, Anne-Lotte C J
Alvarez Florez, Laura
Isgum, Ivana
De Vos, Bob D
Clopton, Paul
Wilde, Arthur A M
Knops, Reinoud E
Narayan, Sanjiv M
Tjong, Fleur V Y
Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
title Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
title_full Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
title_fullStr Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
title_full_unstemmed Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
title_short Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
title_sort optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
topic Clinical Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516624/
https://www.ncbi.nlm.nih.gov/pubmed/37712675
http://dx.doi.org/10.1093/europace/euad271
work_keys_str_mv AT kolkmaartenzh optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT ruiperezcampillosamuel optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT debbrototo optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT bekkerserikj optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT allaartcornelisp optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT rogersalbertj optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT vanderlingenannelottecj optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT alvarezflorezlaura optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT isgumivana optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT devosbobd optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT cloptonpaul optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT wildearthuram optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT knopsreinoude optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT narayansanjivm optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit
AT tjongfleurvy optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit