Cargando…
Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit
AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516624/ https://www.ncbi.nlm.nih.gov/pubmed/37712675 http://dx.doi.org/10.1093/europace/euad271 |
_version_ | 1785109165426868224 |
---|---|
author | Kolk, Maarten Z H Ruipérez-Campillo, Samuel Deb, Brototo Bekkers, Erik J Allaart, Cornelis P Rogers, Albert J Van Der Lingen, Anne-Lotte C J Alvarez Florez, Laura Isgum, Ivana De Vos, Bob D Clopton, Paul Wilde, Arthur A M Knops, Reinoud E Narayan, Sanjiv M Tjong, Fleur V Y |
author_facet | Kolk, Maarten Z H Ruipérez-Campillo, Samuel Deb, Brototo Bekkers, Erik J Allaart, Cornelis P Rogers, Albert J Van Der Lingen, Anne-Lotte C J Alvarez Florez, Laura Isgum, Ivana De Vos, Bob D Clopton, Paul Wilde, Arthur A M Knops, Reinoud E Narayan, Sanjiv M Tjong, Fleur V Y |
author_sort | Kolk, Maarten Z H |
collection | PubMed |
description | AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable cardioverter-defibrillator (ICD) implantation can be improved by ML models that combine clinical variables with 12-lead electrocardiograms (ECG) time-series features. METHODS AND RESULTS: A multicentre study of 1010 patients (64.9 ± 10.8 years, 26.8% female) with ischaemic, dilated, or non-ischaemic cardiomyopathy, and LVEF ≤ 35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD in two academic hospitals was performed. For each patient, a raw 12-lead, 10-s ECG was obtained within 90 days before ICD implantation, and clinical details were collected. Supervised ML models were trained and validated on a development cohort (n = 550) from Hospital A to predict ICD non-arrhythmic mortality at three-year follow-up (i.e. mortality without prior appropriate ICD-therapy). Model performance was evaluated on an external patient cohort from Hospital B (n = 460). At three-year follow-up, 16.0% of patients had died, with 72.8% meeting criteria for non-arrhythmic mortality. Extreme gradient boosting models identified patients with non-arrhythmic mortality with an area under the receiver operating characteristic curve (AUROC) of 0.90 [95% confidence intervals (CI) 0.80–1.00] during internal validation. In the external cohort, the AUROC was 0.79 (95% CI 0.75–0.84). CONCLUSIONS: ML models combining ECG time-series features and clinical variables were able to predict non-arrhythmic mortality within three years after device implantation in a primary prevention population, with robust performance in an independent cohort. |
format | Online Article Text |
id | pubmed-10516624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105166242023-09-23 Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit Kolk, Maarten Z H Ruipérez-Campillo, Samuel Deb, Brototo Bekkers, Erik J Allaart, Cornelis P Rogers, Albert J Van Der Lingen, Anne-Lotte C J Alvarez Florez, Laura Isgum, Ivana De Vos, Bob D Clopton, Paul Wilde, Arthur A M Knops, Reinoud E Narayan, Sanjiv M Tjong, Fleur V Y Europace Clinical Research AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable cardioverter-defibrillator (ICD) implantation can be improved by ML models that combine clinical variables with 12-lead electrocardiograms (ECG) time-series features. METHODS AND RESULTS: A multicentre study of 1010 patients (64.9 ± 10.8 years, 26.8% female) with ischaemic, dilated, or non-ischaemic cardiomyopathy, and LVEF ≤ 35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD in two academic hospitals was performed. For each patient, a raw 12-lead, 10-s ECG was obtained within 90 days before ICD implantation, and clinical details were collected. Supervised ML models were trained and validated on a development cohort (n = 550) from Hospital A to predict ICD non-arrhythmic mortality at three-year follow-up (i.e. mortality without prior appropriate ICD-therapy). Model performance was evaluated on an external patient cohort from Hospital B (n = 460). At three-year follow-up, 16.0% of patients had died, with 72.8% meeting criteria for non-arrhythmic mortality. Extreme gradient boosting models identified patients with non-arrhythmic mortality with an area under the receiver operating characteristic curve (AUROC) of 0.90 [95% confidence intervals (CI) 0.80–1.00] during internal validation. In the external cohort, the AUROC was 0.79 (95% CI 0.75–0.84). CONCLUSIONS: ML models combining ECG time-series features and clinical variables were able to predict non-arrhythmic mortality within three years after device implantation in a primary prevention population, with robust performance in an independent cohort. Oxford University Press 2023-09-15 /pmc/articles/PMC10516624/ /pubmed/37712675 http://dx.doi.org/10.1093/europace/euad271 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Clinical Research Kolk, Maarten Z H Ruipérez-Campillo, Samuel Deb, Brototo Bekkers, Erik J Allaart, Cornelis P Rogers, Albert J Van Der Lingen, Anne-Lotte C J Alvarez Florez, Laura Isgum, Ivana De Vos, Bob D Clopton, Paul Wilde, Arthur A M Knops, Reinoud E Narayan, Sanjiv M Tjong, Fleur V Y Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit |
title | Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit |
title_full | Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit |
title_fullStr | Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit |
title_full_unstemmed | Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit |
title_short | Optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit |
title_sort | optimizing patient selection for primary prevention implantable cardioverter-defibrillator implantation: utilizing multimodal machine learning to assess risk of implantable cardioverter-defibrillator non-benefit |
topic | Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516624/ https://www.ncbi.nlm.nih.gov/pubmed/37712675 http://dx.doi.org/10.1093/europace/euad271 |
work_keys_str_mv | AT kolkmaartenzh optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT ruiperezcampillosamuel optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT debbrototo optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT bekkerserikj optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT allaartcornelisp optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT rogersalbertj optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT vanderlingenannelottecj optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT alvarezflorezlaura optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT isgumivana optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT devosbobd optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT cloptonpaul optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT wildearthuram optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT knopsreinoude optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT narayansanjivm optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit AT tjongfleurvy optimizingpatientselectionforprimarypreventionimplantablecardioverterdefibrillatorimplantationutilizingmultimodalmachinelearningtoassessriskofimplantablecardioverterdefibrillatornonbenefit |