Cargando…
HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon
Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3′-5′ exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-contain...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516660/ https://www.ncbi.nlm.nih.gov/pubmed/37602378 http://dx.doi.org/10.1093/nar/gkad673 |
_version_ | 1785109173201010688 |
---|---|
author | Huntzinger, Eric Sinteff, Jordan Morlet, Bastien Séraphin, Bertrand |
author_facet | Huntzinger, Eric Sinteff, Jordan Morlet, Bastien Séraphin, Bertrand |
author_sort | Huntzinger, Eric |
collection | PubMed |
description | Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3′-5′ exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3′-5′ ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements. |
format | Online Article Text |
id | pubmed-10516660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105166602023-09-23 HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon Huntzinger, Eric Sinteff, Jordan Morlet, Bastien Séraphin, Bertrand Nucleic Acids Res Nucleic Acid Enzymes Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3′-5′ exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3′-5′ ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements. Oxford University Press 2023-08-21 /pmc/articles/PMC10516660/ /pubmed/37602378 http://dx.doi.org/10.1093/nar/gkad673 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Nucleic Acid Enzymes Huntzinger, Eric Sinteff, Jordan Morlet, Bastien Séraphin, Bertrand HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon |
title | HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon |
title_full | HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon |
title_fullStr | HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon |
title_full_unstemmed | HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon |
title_short | HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon |
title_sort | helz2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the rnb family is expressed from a non-canonical initiation codon |
topic | Nucleic Acid Enzymes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516660/ https://www.ncbi.nlm.nih.gov/pubmed/37602378 http://dx.doi.org/10.1093/nar/gkad673 |
work_keys_str_mv | AT huntzingereric helz2anewinterferonregulatedhuman35exoribonucleaseofthernbfamilyisexpressedfromanoncanonicalinitiationcodon AT sinteffjordan helz2anewinterferonregulatedhuman35exoribonucleaseofthernbfamilyisexpressedfromanoncanonicalinitiationcodon AT morletbastien helz2anewinterferonregulatedhuman35exoribonucleaseofthernbfamilyisexpressedfromanoncanonicalinitiationcodon AT seraphinbertrand helz2anewinterferonregulatedhuman35exoribonucleaseofthernbfamilyisexpressedfromanoncanonicalinitiationcodon |