Cargando…
Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients
This study aims to evaluate the dosimetric accuracy of a deep learning (DL)-based deliverable volumetric arc radiation therapy (VMAT) plan generated using DL-based automated planning assistant system (AIVOT, prototype version) for patients with prostate cancer. The VMAT data (cliDose) of 68 patients...
Autores principales: | Kadoya, Noriyuki, Kimura, Yuto, Tozuka, Ryota, Tanaka, Shohei, Arai, Kazuhiro, Katsuta, Yoshiyuki, Shimizu, Hidetoshi, Sugai, Yuto, Yamamoto, Takaya, Umezawa, Rei, Jingu, Keiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516733/ https://www.ncbi.nlm.nih.gov/pubmed/37607667 http://dx.doi.org/10.1093/jrr/rrad058 |
Ejemplares similares
-
Improvement of deep learning prediction model in patient‐specific QA for VMAT with MLC leaf position map and patient's dose distribution
por: Tozuka, Ryota, et al.
Publicado: (2023) -
Feasibility of Differential Dose—Volume Histogram Features in Multivariate Prediction Model for Radiation Pneumonitis Occurrence
por: Katsuta, Yoshiyuki, et al.
Publicado: (2022) -
Evaluation of DIBH and VMAT in Hypofractionated Radiotherapy for Left-Sided Breast Cancers After Breast-Conserving Surgery:
A Planning Study
por: Tang, Liuwei, et al.
Publicado: (2021) -
Evaluation of Unity 1.5 T MR‐linac plan quality in patients with prostate cancer
por: Tanaka, Shohei, et al.
Publicado: (2023) -
A deep learning-based radiomics approach to predict head and neck tumor regression for adaptive radiotherapy
por: Tanaka, Shohei, et al.
Publicado: (2022)