Cargando…
Evolutionary neural architecture search combining multi-branch ConvNet and improved transformer
Deep convolutional neural networks (CNNs) have achieved promising performance in the field of deep learning, but the manual design turns out to be very difficult due to the increasingly complex topologies of CNNs. Recently, neural architecture search (NAS) methods have been proposed to automatically...
Autores principales: | Xu, Yang, Ma, Yongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516961/ https://www.ncbi.nlm.nih.gov/pubmed/37737271 http://dx.doi.org/10.1038/s41598-023-42931-3 |
Ejemplares similares
-
MAE-TransRNet: An improved transformer-ConvNet architecture with masked autoencoder for cardiac MRI registration
por: Xiao, Xin, et al.
Publicado: (2023) -
RAPA-ConvNets: Modified Convolutional Networks for Accelerated Training on Architectures With Analog Arrays
por: Rasch, Malte J., et al.
Publicado: (2019) -
Incep-EEGNet: A ConvNet for Motor Imagery Decoding
por: Riyad, Mouad, et al.
Publicado: (2020) -
PCA driven mixed filter pruning for efficient convNets
por: Ahmed, Waqas, et al.
Publicado: (2022) -
Video action recognition collaborative learning with dynamics via PSO-ConvNet Transformer
por: Nguyen, Huu Phong, et al.
Publicado: (2023)