Cargando…

Domestic greywater treatment using electrocoagulation-electrooxidation process: optimisation and experimental approaches

A synergistic combination of electrocoagulation-electrooxidation (EC-EO) process was used in the current study to treat domestic greywater. The EC process consisted of an aluminium (Al) anode and an iron (Fe) cathode, and the EO process consisted of titanium with platinum coating mesh (Ti/Pt) as an...

Descripción completa

Detalles Bibliográficos
Autores principales: Mousazadeh, Milad, Khademi, Nastaran, Kabdaşlı, Işık, Rezaei, Seyedahmadreza, Hajalifard, Zeinab, Moosakhani, Zohreh, Hashim, Khalid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517000/
https://www.ncbi.nlm.nih.gov/pubmed/37740043
http://dx.doi.org/10.1038/s41598-023-42831-6
Descripción
Sumario:A synergistic combination of electrocoagulation-electrooxidation (EC-EO) process was used in the current study to treat domestic greywater. The EC process consisted of an aluminium (Al) anode and an iron (Fe) cathode, and the EO process consisted of titanium with platinum coating mesh (Ti/Pt) as an anode and stainless steel as a cathode. The effect of operative variables, namely current density, pH, EC time and EO time, on the removal of chemical oxygen demand (COD), colour, turbidity, and total organic carbon (TOC) was studied and optimised using Response Surface Methodology (RSM). The results showed that although the pH affected the removal of all studied pollutants, it had more effect on turbidity removal with a contribution of 88.44%, while the current density had the main dominant effect on colour removal with a contribution of 73.59%. It was also found that at optimal operation conditions for a current density of 2.6 A, an initial pH of 4.67, an EC time of 31.67 min, and an EO time of 93.28 min led to a COD, colour, turbidity, and TOC removal rates of 96.1%, 97.5%, 90.9%, and 98%, respectively, which were close to the predicted results. The average operating cost and energy consumption for the removal of COD, colour, turbidity, and TOC were 0.014 $/m(3) and 0.01 kWh/kg, 0.083 $/m(3) and 0.008 kWh/kg, 0.075 $/m(3) and 0.062 kWh/kg, and 0.105 $/m(3) and 0.079 kWh/kg, respectively.