Cargando…
A machine learning approach to seizure detection in a rat model of post-traumatic epilepsy
Epilepsy is a common neurologic condition frequently investigated using rodent models, with seizures identified by electroencephalography (EEG). Given technological advances, large datasets of EEG are widespread and amenable to machine learning approaches for identification of seizures. While such a...
Autor principal: | Kotloski, Robert J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517002/ https://www.ncbi.nlm.nih.gov/pubmed/37737238 http://dx.doi.org/10.1038/s41598-023-40628-1 |
Ejemplares similares
-
A Deep Learning Approach for Automatic Seizure Detection in Children With Epilepsy
por: Abdelhameed, Ahmed, et al.
Publicado: (2021) -
Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification
por: Wang, Yuanfa, et al.
Publicado: (2017) -
Seizure manifesting as a reaching/grasping movement in a patient with post‐traumatic epilepsy
por: Horinouchi, Toru, et al.
Publicado: (2018) -
Animal Models of Post-Traumatic Epilepsy
por: Keith, Kristin A., et al.
Publicado: (2019) -
Big data analysis and artificial intelligence in epilepsy – common data model analysis and machine learning-based seizure detection and forecasting
por: Chung, Yoon Gi, et al.
Publicado: (2021)