Cargando…
Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques
Apparent diffusion coefficient (ADC) of magnetic resonance imaging (MRI) is an indispensable imaging technique in clinical neuroimaging that quantitatively assesses the diffusivity of water molecules within tissues using diffusion-weighted imaging (DWI). This study focuses on developing a robust mac...
Autores principales: | Vijithananda, Sahan M., Jayatilake, Mohan L., Gonçalves, Teresa C., Rato, Luis M., Weerakoon, Bimali S., Kalupahana, Tharindu D., Silva, Anil D., Dissanayake, Karuna, Hewavithana, P. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517003/ https://www.ncbi.nlm.nih.gov/pubmed/37737249 http://dx.doi.org/10.1038/s41598-023-41353-5 |
Ejemplares similares
-
Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques
por: Vijithananda, Sahan M., et al.
Publicado: (2022) -
Morphometry-based radiomics for predicting therapeutic response in patients with gliomas following radiotherapy
por: Sherminie, Lahanda Purage G., et al.
Publicado: (2023) -
Glioma Grading Capability: Comparisons among Parameters from Dynamic Contrast-Enhanced MRI and ADC Value on DWI
por: Choi, Hyun Seok, et al.
Publicado: (2013) -
MRI whole-lesion texture analysis on ADC maps for the prognostic assessment of ischemic stroke
por: Zhang, Yuan, et al.
Publicado: (2022) -
A simple model for glioma grading based on texture analysis applied to conventional brain MRI
por: Suárez-García, José Gerardo, et al.
Publicado: (2020)