Cargando…
Frugal day-ahead forecasting of multiple local electricity loads by aggregating adaptive models
This paper focuses on day-ahead electricity load forecasting for substations of the distribution network in France; therefore, the corresponding problem lies between the instability of a single consumption and the stability of a countrywide total demand. Moreover, this problem requires to forecast t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517156/ https://www.ncbi.nlm.nih.gov/pubmed/37737225 http://dx.doi.org/10.1038/s41598-023-42488-1 |
Sumario: | This paper focuses on day-ahead electricity load forecasting for substations of the distribution network in France; therefore, the corresponding problem lies between the instability of a single consumption and the stability of a countrywide total demand. Moreover, this problem requires to forecast the loads of over one thousand substations; consequently, it belongs to the field of multiple time series forecasting. To that end, the paper applies an adaptive methodology that provided excellent results at a national scale; the idea is to combine generalized additive models with state-space representations. However, extending this methodology to the prediction of over a thousand time series raises a computational issue. It is solved by developing a frugal variant that reduces the number of estimated parameters: forecasting models are estimated only for a few time series and transfer learning is achieved by relying on aggregation of experts. This approach yields a reduction of computational needs and their associated emissions. Several variants are built, corresponding to different levels of parameter transfer, to find the best trade-off between accuracy and frugality. The selected method achieves competitive results compared to individual models. Finally, the paper highlights the interpretability of the models, which is important for operational applications. |
---|