Cargando…
Periodic, n-soliton and variable separation solutions for an extended (3+1)-dimensional KP-Boussinesq equation
An extended (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation is studied in this paper to construct periodic solution, n-soliton solution and folded localized excitation. Firstly, with the help of the Hirota’s bilinear method and ansatz, some periodic solutions have been derived. Secondly...
Autores principales: | Shao, Chuanlin, Yang, Lu, Yan, Yongsheng, Wu, Jingyu, Zhu, Minting, Li, Lingfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517173/ https://www.ncbi.nlm.nih.gov/pubmed/37739979 http://dx.doi.org/10.1038/s41598-023-42845-0 |
Ejemplares similares
-
Abundant Resonant Behaviors of Soliton Solutions to the (3+1)-dimensional BKP-Boussinesq Equation
por: Chen, Sijia, et al.
Publicado: (2023) -
Stability of line solitons for the KP-II equation in R2
por: Mizumachi, Tetsu
Publicado: (2015) -
Study of analytical method to seek for exact solutions of variant Boussinesq equations
por: Khan, Kamruzzaman, et al.
Publicado: (2014) -
KP solitons and the Grassmannians: combinatorics and geometry of two-dimensional wave patterns
por: Kodama, Yuji
Publicado: (2017) -
General Propagation Lattice Boltzmann Model for the Boussinesq Equation
por: Yang, Wei, et al.
Publicado: (2022)