Cargando…

Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder

The hippocampus has been implicated in the pathogenesis of insomnia disorder (ID) and the purpose of this study was to investigate the neuroprotective mechanism of the natural flavone Kurarinone (Kur) on hippocampal neurotoxicity as a potential treatment of ID. The effect of Kur on hippocampal neuro...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Guoqing, Wu, Yanyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517343/
https://www.ncbi.nlm.nih.gov/pubmed/37740616
http://dx.doi.org/10.1002/prp2.1132
_version_ 1785109299206291456
author Wu, Guoqing
Wu, Yanyan
author_facet Wu, Guoqing
Wu, Yanyan
author_sort Wu, Guoqing
collection PubMed
description The hippocampus has been implicated in the pathogenesis of insomnia disorder (ID) and the purpose of this study was to investigate the neuroprotective mechanism of the natural flavone Kurarinone (Kur) on hippocampal neurotoxicity as a potential treatment of ID. The effect of Kur on hippocampal neuronal cell (HNC) viability and apoptosis were assessed by Cell counting kit‐8 (CCK‐8) assay and flow cytometry, respectively. Then, the effect of Kur on β‐site amyloid precursor protein‐cleaving enzyme 1 (BACE1), brain‐derived neurotrophic factor (BDNF), and phosphatidylinositol‐3‐kinase (PI3K)/protein kinase B (AKT) phosphorylation level were measured by Western blot. Further, SwissTargetPrediction analysis and molecular docking experiments were used to detect a potential target of Kur. Then, the p‐chlorophenylalanine (PCPA) model was established in vivo to further study the effect of BACE1 expression on Kur and HNC. As a result, HNC viability was only significantly decreased by 2 μM of Kur. Kur reversed the impacts of corticosterone upon inhibiting viability (0.25–1 μM), PI3K (0.5–1 μM)/AKT phosphorylation, and BDNF (1 μM) level, and enhancing the apoptosis (0.25–1 μM) and BACE1 expression (1 μM) in HNCs. BACE1 was a potential target of Kur. Notably, Kur (150 mg/kg) attenuated PCPA‐induced upregulation of BACE1 expression in rat hippocampal tissues as ZRAS (0.8 g/kg). The effects of Kur (1 μM) on corticosterone‐treated HNCs were reversed by BACE1 overexpression. Collectively, Kur downregulates BACE1 level to activate PI3K/AKT, thereby attenuating corticosterone‐induced toxicity in HNCs, indicating that Kur possibly exerted a neuroprotective effect, which providing a new perspective for the treatment of insomnia disorders.
format Online
Article
Text
id pubmed-10517343
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105173432023-09-24 Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder Wu, Guoqing Wu, Yanyan Pharmacol Res Perspect Original Articles The hippocampus has been implicated in the pathogenesis of insomnia disorder (ID) and the purpose of this study was to investigate the neuroprotective mechanism of the natural flavone Kurarinone (Kur) on hippocampal neurotoxicity as a potential treatment of ID. The effect of Kur on hippocampal neuronal cell (HNC) viability and apoptosis were assessed by Cell counting kit‐8 (CCK‐8) assay and flow cytometry, respectively. Then, the effect of Kur on β‐site amyloid precursor protein‐cleaving enzyme 1 (BACE1), brain‐derived neurotrophic factor (BDNF), and phosphatidylinositol‐3‐kinase (PI3K)/protein kinase B (AKT) phosphorylation level were measured by Western blot. Further, SwissTargetPrediction analysis and molecular docking experiments were used to detect a potential target of Kur. Then, the p‐chlorophenylalanine (PCPA) model was established in vivo to further study the effect of BACE1 expression on Kur and HNC. As a result, HNC viability was only significantly decreased by 2 μM of Kur. Kur reversed the impacts of corticosterone upon inhibiting viability (0.25–1 μM), PI3K (0.5–1 μM)/AKT phosphorylation, and BDNF (1 μM) level, and enhancing the apoptosis (0.25–1 μM) and BACE1 expression (1 μM) in HNCs. BACE1 was a potential target of Kur. Notably, Kur (150 mg/kg) attenuated PCPA‐induced upregulation of BACE1 expression in rat hippocampal tissues as ZRAS (0.8 g/kg). The effects of Kur (1 μM) on corticosterone‐treated HNCs were reversed by BACE1 overexpression. Collectively, Kur downregulates BACE1 level to activate PI3K/AKT, thereby attenuating corticosterone‐induced toxicity in HNCs, indicating that Kur possibly exerted a neuroprotective effect, which providing a new perspective for the treatment of insomnia disorders. John Wiley and Sons Inc. 2023-09-23 /pmc/articles/PMC10517343/ /pubmed/37740616 http://dx.doi.org/10.1002/prp2.1132 Text en © 2023 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Wu, Guoqing
Wu, Yanyan
Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder
title Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder
title_full Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder
title_fullStr Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder
title_full_unstemmed Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder
title_short Neuroprotective effect of Kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting BACE1 to activate P13K–AKT signaling – A potential treatment in insomnia disorder
title_sort neuroprotective effect of kurarinone against corticosterone‐induced cytotoxicity on rat hippocampal neurons by targeting bace1 to activate p13k–akt signaling – a potential treatment in insomnia disorder
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517343/
https://www.ncbi.nlm.nih.gov/pubmed/37740616
http://dx.doi.org/10.1002/prp2.1132
work_keys_str_mv AT wuguoqing neuroprotectiveeffectofkurarinoneagainstcorticosteroneinducedcytotoxicityonrathippocampalneuronsbytargetingbace1toactivatep13kaktsignalingapotentialtreatmentininsomniadisorder
AT wuyanyan neuroprotectiveeffectofkurarinoneagainstcorticosteroneinducedcytotoxicityonrathippocampalneuronsbytargetingbace1toactivatep13kaktsignalingapotentialtreatmentininsomniadisorder