Cargando…
Rhythmic tapping to a moving beat motion kinematics overrules natural gravity
Beat induction is the cognitive ability that allows humans to listen to a regular pulse in music and move in synchrony with it. Although auditory rhythmic cues induce more consistent synchronization than flashing visual metronomes, this auditory-visual asymmetry can be canceled by visual moving stim...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517406/ https://www.ncbi.nlm.nih.gov/pubmed/37744410 http://dx.doi.org/10.1016/j.isci.2023.107543 |
Sumario: | Beat induction is the cognitive ability that allows humans to listen to a regular pulse in music and move in synchrony with it. Although auditory rhythmic cues induce more consistent synchronization than flashing visual metronomes, this auditory-visual asymmetry can be canceled by visual moving stimuli. Here, we investigated whether the naturalness of visual motion or its kinematics could provide a synchronization advantage over flashing metronomes. Subjects were asked to tap in sync with visual metronomes defined by vertically accelerating/decelerating motion, either congruent or not with natural gravity; horizontally accelerating/decelerating motion; or flashing stimuli. We found that motion kinematics was the predominant factor determining rhythm synchronization, as accelerating moving metronomes in any cardinal direction produced more precise and predictive tapping than decelerating or flashing conditions. Our results support the notion that accelerating visual metronomes convey a strong sense of beat, as seen in the cueing movements of an orchestra director. |
---|