Cargando…
Detecting biased validation of predictive models in the positive-unlabeled setting: disease gene prioritization case study
MOTIVATION: Positive-unlabeled data consists of points with either positive or unknown labels. It is widespread in medical, genetic, and biological settings, creating a high demand for predictive positive-unlabeled models. The performance of such models is usually estimated using validation sets, as...
Autores principales: | Molotkov, Ivan, Artomov, Mykyta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517638/ https://www.ncbi.nlm.nih.gov/pubmed/37745001 http://dx.doi.org/10.1093/bioadv/vbad128 |
Ejemplares similares
-
ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples
por: Mordelet, Fantine, et al.
Publicado: (2011) -
Gene, cell type, and drug prioritization analysis suggest genetic basis for the utility of diuretics in treating Alzheimer disease
por: Pinakhina, Daria, et al.
Publicado: (2023) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016) -
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012) -
Mendelian Randomization Analysis reveals Inverse Genetic Risks between Skin Cancers and Vitiligo
por: Rashid, Sarem, et al.
Publicado: (2023)