Cargando…
Realistic fault detection of li-ion battery via dynamical deep learning
Accurate evaluation of Li-ion battery (LiB) safety conditions can reduce unexpected cell failures, facilitate battery deployment, and promote low-carbon economies. Despite the recent progress in artificial intelligence, anomaly detection methods are not customized for or validated in realistic batte...
Autores principales: | Zhang, Jingzhao, Wang, Yanan, Jiang, Benben, He, Haowei, Huang, Shaobo, Wang, Chen, Zhang, Yang, Han, Xuebing, Guo, Dongxu, He, Guannan, Ouyang, Minggao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517941/ https://www.ncbi.nlm.nih.gov/pubmed/37741826 http://dx.doi.org/10.1038/s41467-023-41226-5 |
Ejemplares similares
-
Thermal runaway of Lithium-ion batteries employing LiN(SO(2)F)(2)-based concentrated electrolytes
por: Hou, Junxian, et al.
Publicado: (2020) -
Tackling realistic Li(+) flux for high-energy lithium metal batteries
por: Zhang, Shuoqing, et al.
Publicado: (2022) -
Synthesis and electrochemical performance of NaV(3)O(8) nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries
por: Hu, Fang, et al.
Publicado: (2019) -
Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures
por: Li, Yalun, et al.
Publicado: (2020) -
The void formation behaviors in working solid-state Li metal batteries
por: Lu, Yang, et al.
Publicado: (2022)