Cargando…

Agreement and precision of wide and cube scan measurements between swept-source and spectral-domain OCT in normal and glaucoma eyes

This study aimed to evaluate agreement of Wide scan measurements from swept-source optical coherence tomography (SS-OCT) Triton and spectral-domain OCT (SD-OCT) Maestro in normal/glaucoma eyes, and to assess the precision of measurements from Wide and Cube scans of both devices. Three Triton and thr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Huiyuan, EI-Nimri, Nevin W., Durbin, Mary K., Arias, Juan D., Moghimi, Sasan, Weinreb, Robert N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517954/
https://www.ncbi.nlm.nih.gov/pubmed/37741895
http://dx.doi.org/10.1038/s41598-023-43230-7
Descripción
Sumario:This study aimed to evaluate agreement of Wide scan measurements from swept-source optical coherence tomography (SS-OCT) Triton and spectral-domain OCT (SD-OCT) Maestro in normal/glaucoma eyes, and to assess the precision of measurements from Wide and Cube scans of both devices. Three Triton and three Maestro operator/device configurations were created by pairing three operators, with study eye and testing order randomized. Three scans were captured for Wide (12 mm × 9 mm), Macular Cube (7 mm × 7 mm–Triton; 6 mm × 6 mm-Maestro), and Optic Disc Cube (6 mm × 6 mm) scans for 25 normal eyes and 25 glaucoma eyes. Parameter measurements included circumpapillary retinal nerve fiber layer(cpRNFL), ganglion cell layer + inner plexiform layer (GCL+), and ganglion cell complex (GCL++). A two-way random effect analysis of variance model was used to estimate the repeatability and reproducibility; agreement was evaluated by Bland–Altman analysis and Deming regression. The precision estimates were low, indicating high precision, for all thickness measurements with the majority of the limits < 5 µm for the macula and < 10 µm for the optic disc. Precision of the Wide and Cube scans were comparable. Excellent agreement between the two devices was found for Wide scans, with the mean difference < 3 µm across all measurements (cpRNFL < 3 µm, GCL+  < 2 µm, GCL ++  < 1 µm), indicating interoperability. A single Wide scan covering the peripapillary and macular regions may be useful for glaucoma diagnosis and management.