Cargando…

Fabrication of magnesium oxide–calcium alginate hydrogel for scaffolding yttrium and neodymium from aqueous solutions

In this research, the possibility of using sustainable nano-MgO/Ca-alginate beads for efficient sorption of some rare earth metal ions such as neodymium(III) and yttrium(III) from an aqueous acidic solution was explored. The nano-MgO/Ca-alginate beads adsorbent was characterized before and after sor...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghaly, M., Masry, B. A., Abu Elgoud, E. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517964/
https://www.ncbi.nlm.nih.gov/pubmed/37741840
http://dx.doi.org/10.1038/s41598-023-42342-4
Descripción
Sumario:In this research, the possibility of using sustainable nano-MgO/Ca-alginate beads for efficient sorption of some rare earth metal ions such as neodymium(III) and yttrium(III) from an aqueous acidic solution was explored. The nano-MgO/Ca-alginate beads adsorbent was characterized before and after sorption of Nd(III) and Y(III) using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) techniques. Batch sorption parameters were investigated, such as contact time, initial metal ion concentration, and adsorbent dose (V/m). The calculated experimental results showed that the suitable selected sorption conditions were carried out using 100 mg/L of Nd(III) and Y(III) with nano MgO/Ca-alginate beads (contact time = 90 min, pH = 2, V/m = 0.05 L/g). The maximum sorption capacity of 0.1 g of nano MgO/Ca-alginate was found to be 7.85 mg/g and 5.60 mg/g for Nd(III) and Y(III), respectively. The desorption of Nd(III) and Y(III) from the loaded nano MgO/Ca-alginate was achieved with 1.0 M sulfamic acid and found to be 51.0% and 44.2%, respectively. The calculated thermodynamic parameters for the nano MgO/Ca-alginate/Nd/Y system show that the positive charge of ΔH(o) confirmed the endothermic nature of the sorption process, ΔS(o) (positive) indicates an increase in reaction system disordering, and ΔG(o) (negative) indicates a spontaneous process. These kinetic results indicate that the sorption process of Nd(III) and Y(III) on nano MgO/Ca-alginate beads is performed by the chemisorption process.