Cargando…
Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection
Human monkeypox is a very unusual virus that can devastate society. Early identification and diagnosis are essential to treat and manage an illness effectively. Human monkeypox disease detection using deep learning models has attracted increasing attention recently. The virus that causes monkeypox m...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517970/ https://www.ncbi.nlm.nih.gov/pubmed/37741892 http://dx.doi.org/10.1038/s41598-023-43236-1 |
_version_ | 1785109411846422528 |
---|---|
author | Dahiya, Neeraj Sharma, Yogesh Kumar Rani, Uma Hussain, Shekjavid Nabilal, Khan Vajid Mohan, Anand Nuristani, Nasratullah |
author_facet | Dahiya, Neeraj Sharma, Yogesh Kumar Rani, Uma Hussain, Shekjavid Nabilal, Khan Vajid Mohan, Anand Nuristani, Nasratullah |
author_sort | Dahiya, Neeraj |
collection | PubMed |
description | Human monkeypox is a very unusual virus that can devastate society. Early identification and diagnosis are essential to treat and manage an illness effectively. Human monkeypox disease detection using deep learning models has attracted increasing attention recently. The virus that causes monkeypox may be passed to people, making it a zoonotic illness. The latest monkeypox epidemic has hit more than 40 nations. Computer-assisted approaches using Deep Learning techniques for automatically identifying skin lesions have shown to be a viable alternative in light of the fast proliferation and ever-growing problems of supplying PCR (Polymerase Chain Reaction) Testing in places with limited availability. In this research, we introduce a deep learning model for detecting human monkeypoxes that is accurate and resilient by tuning its hyper-parameters. We employed a mixture of convolutional neural networks and transfer learning strategies to extract characteristics from medical photos and properly identify them. We also used hyperparameter optimization strategies to fine-tune the Model and get the best possible results. This paper proposes a Yolov5 model-based method for differentiating between chickenpox and Monkeypox lesions on skin pictures. The Roboflow skin lesion picture dataset was subjected to three different hyperparameter tuning strategies: the SDG optimizer, the Bayesian optimizer, and Learning without Forgetting. The proposed Model had the highest classification accuracy (98.18%) when applied to photos of monkeypox skin lesions. Our findings show that the suggested Model surpasses the current best-in-class models and may be used in clinical settings for actual Human Monkeypox disease detection and diagnosis. |
format | Online Article Text |
id | pubmed-10517970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105179702023-09-25 Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection Dahiya, Neeraj Sharma, Yogesh Kumar Rani, Uma Hussain, Shekjavid Nabilal, Khan Vajid Mohan, Anand Nuristani, Nasratullah Sci Rep Article Human monkeypox is a very unusual virus that can devastate society. Early identification and diagnosis are essential to treat and manage an illness effectively. Human monkeypox disease detection using deep learning models has attracted increasing attention recently. The virus that causes monkeypox may be passed to people, making it a zoonotic illness. The latest monkeypox epidemic has hit more than 40 nations. Computer-assisted approaches using Deep Learning techniques for automatically identifying skin lesions have shown to be a viable alternative in light of the fast proliferation and ever-growing problems of supplying PCR (Polymerase Chain Reaction) Testing in places with limited availability. In this research, we introduce a deep learning model for detecting human monkeypoxes that is accurate and resilient by tuning its hyper-parameters. We employed a mixture of convolutional neural networks and transfer learning strategies to extract characteristics from medical photos and properly identify them. We also used hyperparameter optimization strategies to fine-tune the Model and get the best possible results. This paper proposes a Yolov5 model-based method for differentiating between chickenpox and Monkeypox lesions on skin pictures. The Roboflow skin lesion picture dataset was subjected to three different hyperparameter tuning strategies: the SDG optimizer, the Bayesian optimizer, and Learning without Forgetting. The proposed Model had the highest classification accuracy (98.18%) when applied to photos of monkeypox skin lesions. Our findings show that the suggested Model surpasses the current best-in-class models and may be used in clinical settings for actual Human Monkeypox disease detection and diagnosis. Nature Publishing Group UK 2023-09-23 /pmc/articles/PMC10517970/ /pubmed/37741892 http://dx.doi.org/10.1038/s41598-023-43236-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Dahiya, Neeraj Sharma, Yogesh Kumar Rani, Uma Hussain, Shekjavid Nabilal, Khan Vajid Mohan, Anand Nuristani, Nasratullah Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection |
title | Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection |
title_full | Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection |
title_fullStr | Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection |
title_full_unstemmed | Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection |
title_short | Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection |
title_sort | hyper-parameter tuned deep learning approach for effective human monkeypox disease detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517970/ https://www.ncbi.nlm.nih.gov/pubmed/37741892 http://dx.doi.org/10.1038/s41598-023-43236-1 |
work_keys_str_mv | AT dahiyaneeraj hyperparametertuneddeeplearningapproachforeffectivehumanmonkeypoxdiseasedetection AT sharmayogeshkumar hyperparametertuneddeeplearningapproachforeffectivehumanmonkeypoxdiseasedetection AT raniuma hyperparametertuneddeeplearningapproachforeffectivehumanmonkeypoxdiseasedetection AT hussainshekjavid hyperparametertuneddeeplearningapproachforeffectivehumanmonkeypoxdiseasedetection AT nabilalkhanvajid hyperparametertuneddeeplearningapproachforeffectivehumanmonkeypoxdiseasedetection AT mohananand hyperparametertuneddeeplearningapproachforeffectivehumanmonkeypoxdiseasedetection AT nuristaninasratullah hyperparametertuneddeeplearningapproachforeffectivehumanmonkeypoxdiseasedetection |