Cargando…
MULGA, a unified multi-view graph autoencoder-based approach for identifying drug–protein interaction and drug repositioning
MOTIVATION: Identifying drug–protein interactions (DPIs) is a critical step in drug repositioning, which allows reuse of approved drugs that may be effective for treating a different disease and thereby alleviates the challenges of new drug development. Despite the fact that a great variety of compu...
Autores principales: | Ma, Jiani, Li, Chen, Zhang, Yiwen, Wang, Zhikang, Li, Shanshan, Guo, Yuming, Zhang, Lin, Liu, Hui, Gao, Xin, Song, Jiangning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518077/ https://www.ncbi.nlm.nih.gov/pubmed/37610353 http://dx.doi.org/10.1093/bioinformatics/btad524 |
Ejemplares similares
-
Drug repositioning based on heterogeneous networks and variational graph autoencoders
por: Lei, Song, et al.
Publicado: (2022) -
SMG: self-supervised masked graph learning for cancer gene identification
por: Cui, Yan, et al.
Publicado: (2023) -
A drug repositioning algorithm based on a deep autoencoder and adaptive fusion
por: Chen, Peng, et al.
Publicado: (2021) -
Drug Repositioning with GraphSAGE and Clustering Constraints Based on Drug and Disease Networks
por: Zhang, Yuchen, et al.
Publicado: (2022) -
ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks
por: Hu, Chao, et al.
Publicado: (2023)