Cargando…
Risk factor analysis for major mediastinal vessel invasion in thymic epithelial tumors based on multi-slice CT Imaging
OBJECTIVE: To explore the characteristics and risk factors for major mediastinal vessel invasion in different risk grades of thymic epithelial tumors (TETs) based on computed tomography (CT) imaging, and to develop prediction models of major mediastinal artery and vein invasion. METHODS: One hundred...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518454/ https://www.ncbi.nlm.nih.gov/pubmed/37752995 http://dx.doi.org/10.3389/fonc.2023.1239419 |
Sumario: | OBJECTIVE: To explore the characteristics and risk factors for major mediastinal vessel invasion in different risk grades of thymic epithelial tumors (TETs) based on computed tomography (CT) imaging, and to develop prediction models of major mediastinal artery and vein invasion. METHODS: One hundred and twenty-two TET patients confirmed by histopathological analysis who underwent thorax CT were enrolled in this study. Clinical and CT data were retrospectively reviewed for these patients. According to the abutment degree between the tumor and major mediastinal vessels, the arterial invasion was divided into grade I, II, and III (< 25%, 25 – 49%, and ≥ 50%, respectively); the venous invasion was divided into grade I and II (< 50% and ≥ 50%). The degree of vessel invasion was compared among different defined subtypes or stages of TETs using the chi-square tests. The risk factors associated with TET vascular invasion were identified using multivariate logistic regression analysis. RESULTS: Based on logistic regression analysis, male patients (β = 1.549; odds ratio, 4.824) and the pericardium or pleural invasion (β = 2.209; odds ratio, 9.110) were independent predictors of 25% artery invasion, and the midline location (β = 2.504; odds ratio, 12.234) and mediastinal lymphadenopathy (β = 2.490; odds ratio, 12.06) were independent predictors of 50% artery invasion. As for 50% venous invasion, the risk factors include midline location (β = 2.303; odds ratio, 10.0), maximum tumor diameter larger than 5.9 cm (β = 4.038; odds ratio, 56.736), and pericardial or pleural effusion (β = 1.460; odds ratio, 4.306). The multivariate logistic model obtained relatively high predicting efficacy, and the area under the curve (AUC), sensitivity, and specificity were 0.944, 84.6%, and 91.7% for predicting 50% artery invasion, and 0.913, 81.8%, and 86.0% for 50% venous invasion in TET patients, respectively. CONCLUSION: Several CT features can be used as independent predictors of ≥50% artery or venous invasion. A multivariate logistic regression model based on CT features is helpful in predicting the vascular invasion grades in patients with TET. |
---|