Cargando…

Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks

Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural network...

Descripción completa

Detalles Bibliográficos
Autor principal: Pulvermüller, Friedemann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pergamon Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518464/
https://www.ncbi.nlm.nih.gov/pubmed/37482195
http://dx.doi.org/10.1016/j.pneurobio.2023.102511
_version_ 1785109519572926464
author Pulvermüller, Friedemann
author_facet Pulvermüller, Friedemann
author_sort Pulvermüller, Friedemann
collection PubMed
description Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural networks by implementing brain similarities at different scales, ranging from the micro- and mesoscopic levels of neuronal function, local neuronal links and circuit interaction to large-scale anatomical structure and between-area connectivity. This review shows how brain-constrained neural networks can be applied to study in silico the formation of mechanisms for symbol and concept processing and to work towards neurobiological explanations of specifically human cognitive abilities. These include verbal working memory and learning of large vocabularies of symbols, semantic binding carried by specific areas of cortex, attention focusing and modulation driven by symbol type, and the acquisition of concrete and abstract concepts partly influenced by symbols. Neuronal assembly activity in the networks is analyzed to deliver putative mechanistic correlates of higher cognitive processes and to develop candidate explanations founded in established neurobiological principles.
format Online
Article
Text
id pubmed-10518464
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Pergamon Press
record_format MEDLINE/PubMed
spelling pubmed-105184642023-11-01 Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks Pulvermüller, Friedemann Prog Neurobiol Article Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural networks by implementing brain similarities at different scales, ranging from the micro- and mesoscopic levels of neuronal function, local neuronal links and circuit interaction to large-scale anatomical structure and between-area connectivity. This review shows how brain-constrained neural networks can be applied to study in silico the formation of mechanisms for symbol and concept processing and to work towards neurobiological explanations of specifically human cognitive abilities. These include verbal working memory and learning of large vocabularies of symbols, semantic binding carried by specific areas of cortex, attention focusing and modulation driven by symbol type, and the acquisition of concrete and abstract concepts partly influenced by symbols. Neuronal assembly activity in the networks is analyzed to deliver putative mechanistic correlates of higher cognitive processes and to develop candidate explanations founded in established neurobiological principles. Pergamon Press 2023-11 /pmc/articles/PMC10518464/ /pubmed/37482195 http://dx.doi.org/10.1016/j.pneurobio.2023.102511 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Pulvermüller, Friedemann
Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks
title Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks
title_full Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks
title_fullStr Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks
title_full_unstemmed Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks
title_short Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks
title_sort neurobiological mechanisms for language, symbols and concepts: clues from brain-constrained deep neural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518464/
https://www.ncbi.nlm.nih.gov/pubmed/37482195
http://dx.doi.org/10.1016/j.pneurobio.2023.102511
work_keys_str_mv AT pulvermullerfriedemann neurobiologicalmechanismsforlanguagesymbolsandconceptscluesfrombrainconstraineddeepneuralnetworks