Cargando…
Optimizing support vector machines and autoregressive integrated moving average methods for heart rate variability data correction
Heart rate variability (HRV) is the variation in time between successive heartbeats and can be used as an indirect measure of autonomic nervous system (ANS) activity. During physical exercise, movement of the measuring device can cause artifacts in the HRV data, severely affecting the analysis of th...
Autores principales: | Svane, Jakob, Wiktorski, Tomasz, Ørn, Stein, Eftestøl, Trygve Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518477/ https://www.ncbi.nlm.nih.gov/pubmed/37753351 http://dx.doi.org/10.1016/j.mex.2023.102381 |
Ejemplares similares
-
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
por: Lynch, Christopher J., et al.
Publicado: (2021) -
Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators
por: Alwee, Razana, et al.
Publicado: (2013) -
Future Trend Forecast by Empirical Wavelet Transform and Autoregressive Moving Average
por: Wang, Qiusheng, et al.
Publicado: (2018) -
Classification of genomic components and prediction of genes of Begomovirus based on subsequence natural vector and support vector machine
por: Pei, Shaojun, et al.
Publicado: (2020) -
Deep learning and support vector machines for transcription start site identification
por: Barbero-Aparicio, José A., et al.
Publicado: (2023)