Cargando…
Tumor type classification and candidate cancer-specific biomarkers discovery via semi-supervised learning
Identifying cancer-related differentially expressed genes provides significant information for diagnosing tumors, predicting prognoses, and effective treatments. Recently, deep learning methods have been used to perform gene differential expression analysis using microarray-based high-throughput gen...
Autores principales: | Chen, Peng, Li, Zhenlei, Hong, Zhaolin, Zheng, Haoran, Zeng, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biophysics Reports Editorial Office
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518520/ https://www.ncbi.nlm.nih.gov/pubmed/37753058 http://dx.doi.org/10.52601/bpr.2023.230005 |
Ejemplares similares
-
McEnhancer: predicting gene expression via semi-supervised assignment of enhancers to target genes
por: Hafez, Dina, et al.
Publicado: (2017) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Developing Sustainable Classification of Diseases via Deep Learning and Semi-Supervised Learning
por: Yin, Chunwu, et al.
Publicado: (2020) -
Biomarker discovery across annotated and unannotated microarray datasets using semi-supervised learning
por: Harris, Cole, et al.
Publicado: (2008) -
DISC: a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning
por: He, Yao, et al.
Publicado: (2020)