Cargando…
Improved gelling and emulsifying properties of chicken wooden breast myofibrillar protein by high-intensity ultrasound combination with pH-shifting
The functional properties of chicken wooden breast myofibrillar protein (WBMP) are impaired. The protein structure and functional properties of WBMP are investigated using high-intensity ultrasound (HIU, 20 kHz, 200, 400, 600, and 800 W) combined with pH-shifting. HIU promoted the unfolding of WBMP,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518579/ https://www.ncbi.nlm.nih.gov/pubmed/37734357 http://dx.doi.org/10.1016/j.psj.2023.103063 |
Sumario: | The functional properties of chicken wooden breast myofibrillar protein (WBMP) are impaired. The protein structure and functional properties of WBMP are investigated using high-intensity ultrasound (HIU, 20 kHz, 200, 400, 600, and 800 W) combined with pH-shifting. HIU promoted the unfolding of WBMP, reduced the particle size of WBMP, and enhanced electrostatic repulsion. Medium-power (200 and 400 W) HIU promoted the α-helix to β-sheet transformation, while high-power (600 and 800 W) HIU significantly (P < 0.05) increased the content of the random coil. The microstructure and images after storage further showed that 400 W HIU in combination with pH-shifting made the WBMP emulsion more uniform. In addition, gel performance analysis showed that the gel strength and water-holding capacity of the protein gel increased gradually after 400 W. Scanning electron microscope images also showed the formation of a stable network structure in the protein gel. This work could help promote the utilization of inferior proteins similar to WBMP, but the utilization rate still needs to be further improved. |
---|