Cargando…

Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome

Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%–25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectro...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Xue, Xue, Zhangzhi, Zeng, Fang-Fang, Tang, Jun, Yue, Liang, Wang, Bo, Ge, Weigang, Xie, Yuting, Miao, Zelei, Gou, Wanglong, Fu, Yuanqing, Li, Sainan, Gao, Jinlong, Shuai, Menglei, Zhang, Ke, Xu, Fengzhe, Tian, Yunyi, Xiang, Nan, Zhou, Yan, Shan, Peng-Fei, Zhu, Yi, Chen, Yu-ming, Zheng, Ju-Sheng, Guo, Tiannan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518601/
https://www.ncbi.nlm.nih.gov/pubmed/37652016
http://dx.doi.org/10.1016/j.xcrm.2023.101172
_version_ 1785109550993506304
author Cai, Xue
Xue, Zhangzhi
Zeng, Fang-Fang
Tang, Jun
Yue, Liang
Wang, Bo
Ge, Weigang
Xie, Yuting
Miao, Zelei
Gou, Wanglong
Fu, Yuanqing
Li, Sainan
Gao, Jinlong
Shuai, Menglei
Zhang, Ke
Xu, Fengzhe
Tian, Yunyi
Xiang, Nan
Zhou, Yan
Shan, Peng-Fei
Zhu, Yi
Chen, Yu-ming
Zheng, Ju-Sheng
Guo, Tiannan
author_facet Cai, Xue
Xue, Zhangzhi
Zeng, Fang-Fang
Tang, Jun
Yue, Liang
Wang, Bo
Ge, Weigang
Xie, Yuting
Miao, Zelei
Gou, Wanglong
Fu, Yuanqing
Li, Sainan
Gao, Jinlong
Shuai, Menglei
Zhang, Ke
Xu, Fengzhe
Tian, Yunyi
Xiang, Nan
Zhou, Yan
Shan, Peng-Fei
Zhu, Yi
Chen, Yu-ming
Zheng, Ju-Sheng
Guo, Tiannan
author_sort Cai, Xue
collection PubMed
description Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%–25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.
format Online
Article
Text
id pubmed-10518601
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105186012023-09-26 Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome Cai, Xue Xue, Zhangzhi Zeng, Fang-Fang Tang, Jun Yue, Liang Wang, Bo Ge, Weigang Xie, Yuting Miao, Zelei Gou, Wanglong Fu, Yuanqing Li, Sainan Gao, Jinlong Shuai, Menglei Zhang, Ke Xu, Fengzhe Tian, Yunyi Xiang, Nan Zhou, Yan Shan, Peng-Fei Zhu, Yi Chen, Yu-ming Zheng, Ju-Sheng Guo, Tiannan Cell Rep Med Article Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%–25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS. Elsevier 2023-08-30 /pmc/articles/PMC10518601/ /pubmed/37652016 http://dx.doi.org/10.1016/j.xcrm.2023.101172 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Cai, Xue
Xue, Zhangzhi
Zeng, Fang-Fang
Tang, Jun
Yue, Liang
Wang, Bo
Ge, Weigang
Xie, Yuting
Miao, Zelei
Gou, Wanglong
Fu, Yuanqing
Li, Sainan
Gao, Jinlong
Shuai, Menglei
Zhang, Ke
Xu, Fengzhe
Tian, Yunyi
Xiang, Nan
Zhou, Yan
Shan, Peng-Fei
Zhu, Yi
Chen, Yu-ming
Zheng, Ju-Sheng
Guo, Tiannan
Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome
title Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome
title_full Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome
title_fullStr Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome
title_full_unstemmed Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome
title_short Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome
title_sort population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518601/
https://www.ncbi.nlm.nih.gov/pubmed/37652016
http://dx.doi.org/10.1016/j.xcrm.2023.101172
work_keys_str_mv AT caixue populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT xuezhangzhi populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT zengfangfang populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT tangjun populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT yueliang populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT wangbo populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT geweigang populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT xieyuting populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT miaozelei populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT gouwanglong populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT fuyuanqing populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT lisainan populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT gaojinlong populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT shuaimenglei populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT zhangke populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT xufengzhe populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT tianyunyi populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT xiangnan populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT zhouyan populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT shanpengfei populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT zhuyi populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT chenyuming populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT zhengjusheng populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome
AT guotiannan populationserumproteomicsuncoversaprognosticproteinclassifierformetabolicsyndrome