Cargando…

Deep learning integrates histopathology and proteogenomics at a pan-cancer level

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Joshua M., Hong, Runyu, Demicco, Elizabeth G., Tan, Jimin, Lazcano, Rossana, Moreira, Andre L., Li, Yize, Calinawan, Anna, Razavian, Narges, Schraink, Tobias, Gillette, Michael A., Omenn, Gilbert S., An, Eunkyung, Rodriguez, Henry, Tsirigos, Aristotelis, Ruggles, Kelly V., Ding, Li, Robles, Ana I., Mani, D.R., Rodland, Karin D., Lazar, Alexander J., Liu, Wenke, Fenyö, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518635/
https://www.ncbi.nlm.nih.gov/pubmed/37582371
http://dx.doi.org/10.1016/j.xcrm.2023.101173
_version_ 1785109558993092608
author Wang, Joshua M.
Hong, Runyu
Demicco, Elizabeth G.
Tan, Jimin
Lazcano, Rossana
Moreira, Andre L.
Li, Yize
Calinawan, Anna
Razavian, Narges
Schraink, Tobias
Gillette, Michael A.
Omenn, Gilbert S.
An, Eunkyung
Rodriguez, Henry
Tsirigos, Aristotelis
Ruggles, Kelly V.
Ding, Li
Robles, Ana I.
Mani, D.R.
Rodland, Karin D.
Lazar, Alexander J.
Liu, Wenke
Fenyö, David
author_facet Wang, Joshua M.
Hong, Runyu
Demicco, Elizabeth G.
Tan, Jimin
Lazcano, Rossana
Moreira, Andre L.
Li, Yize
Calinawan, Anna
Razavian, Narges
Schraink, Tobias
Gillette, Michael A.
Omenn, Gilbert S.
An, Eunkyung
Rodriguez, Henry
Tsirigos, Aristotelis
Ruggles, Kelly V.
Ding, Li
Robles, Ana I.
Mani, D.R.
Rodland, Karin D.
Lazar, Alexander J.
Liu, Wenke
Fenyö, David
author_sort Wang, Joshua M.
collection PubMed
description We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.
format Online
Article
Text
id pubmed-10518635
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105186352023-09-26 Deep learning integrates histopathology and proteogenomics at a pan-cancer level Wang, Joshua M. Hong, Runyu Demicco, Elizabeth G. Tan, Jimin Lazcano, Rossana Moreira, Andre L. Li, Yize Calinawan, Anna Razavian, Narges Schraink, Tobias Gillette, Michael A. Omenn, Gilbert S. An, Eunkyung Rodriguez, Henry Tsirigos, Aristotelis Ruggles, Kelly V. Ding, Li Robles, Ana I. Mani, D.R. Rodland, Karin D. Lazar, Alexander J. Liu, Wenke Fenyö, David Cell Rep Med Article We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models. Elsevier 2023-08-14 /pmc/articles/PMC10518635/ /pubmed/37582371 http://dx.doi.org/10.1016/j.xcrm.2023.101173 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Joshua M.
Hong, Runyu
Demicco, Elizabeth G.
Tan, Jimin
Lazcano, Rossana
Moreira, Andre L.
Li, Yize
Calinawan, Anna
Razavian, Narges
Schraink, Tobias
Gillette, Michael A.
Omenn, Gilbert S.
An, Eunkyung
Rodriguez, Henry
Tsirigos, Aristotelis
Ruggles, Kelly V.
Ding, Li
Robles, Ana I.
Mani, D.R.
Rodland, Karin D.
Lazar, Alexander J.
Liu, Wenke
Fenyö, David
Deep learning integrates histopathology and proteogenomics at a pan-cancer level
title Deep learning integrates histopathology and proteogenomics at a pan-cancer level
title_full Deep learning integrates histopathology and proteogenomics at a pan-cancer level
title_fullStr Deep learning integrates histopathology and proteogenomics at a pan-cancer level
title_full_unstemmed Deep learning integrates histopathology and proteogenomics at a pan-cancer level
title_short Deep learning integrates histopathology and proteogenomics at a pan-cancer level
title_sort deep learning integrates histopathology and proteogenomics at a pan-cancer level
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518635/
https://www.ncbi.nlm.nih.gov/pubmed/37582371
http://dx.doi.org/10.1016/j.xcrm.2023.101173
work_keys_str_mv AT wangjoshuam deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT hongrunyu deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT demiccoelizabethg deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT tanjimin deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT lazcanorossana deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT moreiraandrel deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT liyize deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT calinawananna deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT razaviannarges deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT schrainktobias deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT gillettemichaela deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT omenngilberts deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT aneunkyung deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT rodriguezhenry deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT tsirigosaristotelis deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT ruggleskellyv deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT dingli deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT roblesanai deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT manidr deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT rodlandkarind deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT lazaralexanderj deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT liuwenke deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT fenyodavid deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel
AT deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel