Cargando…
Deep learning integrates histopathology and proteogenomics at a pan-cancer level
We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types f...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518635/ https://www.ncbi.nlm.nih.gov/pubmed/37582371 http://dx.doi.org/10.1016/j.xcrm.2023.101173 |
_version_ | 1785109558993092608 |
---|---|
author | Wang, Joshua M. Hong, Runyu Demicco, Elizabeth G. Tan, Jimin Lazcano, Rossana Moreira, Andre L. Li, Yize Calinawan, Anna Razavian, Narges Schraink, Tobias Gillette, Michael A. Omenn, Gilbert S. An, Eunkyung Rodriguez, Henry Tsirigos, Aristotelis Ruggles, Kelly V. Ding, Li Robles, Ana I. Mani, D.R. Rodland, Karin D. Lazar, Alexander J. Liu, Wenke Fenyö, David |
author_facet | Wang, Joshua M. Hong, Runyu Demicco, Elizabeth G. Tan, Jimin Lazcano, Rossana Moreira, Andre L. Li, Yize Calinawan, Anna Razavian, Narges Schraink, Tobias Gillette, Michael A. Omenn, Gilbert S. An, Eunkyung Rodriguez, Henry Tsirigos, Aristotelis Ruggles, Kelly V. Ding, Li Robles, Ana I. Mani, D.R. Rodland, Karin D. Lazar, Alexander J. Liu, Wenke Fenyö, David |
author_sort | Wang, Joshua M. |
collection | PubMed |
description | We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models. |
format | Online Article Text |
id | pubmed-10518635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105186352023-09-26 Deep learning integrates histopathology and proteogenomics at a pan-cancer level Wang, Joshua M. Hong, Runyu Demicco, Elizabeth G. Tan, Jimin Lazcano, Rossana Moreira, Andre L. Li, Yize Calinawan, Anna Razavian, Narges Schraink, Tobias Gillette, Michael A. Omenn, Gilbert S. An, Eunkyung Rodriguez, Henry Tsirigos, Aristotelis Ruggles, Kelly V. Ding, Li Robles, Ana I. Mani, D.R. Rodland, Karin D. Lazar, Alexander J. Liu, Wenke Fenyö, David Cell Rep Med Article We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models. Elsevier 2023-08-14 /pmc/articles/PMC10518635/ /pubmed/37582371 http://dx.doi.org/10.1016/j.xcrm.2023.101173 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Joshua M. Hong, Runyu Demicco, Elizabeth G. Tan, Jimin Lazcano, Rossana Moreira, Andre L. Li, Yize Calinawan, Anna Razavian, Narges Schraink, Tobias Gillette, Michael A. Omenn, Gilbert S. An, Eunkyung Rodriguez, Henry Tsirigos, Aristotelis Ruggles, Kelly V. Ding, Li Robles, Ana I. Mani, D.R. Rodland, Karin D. Lazar, Alexander J. Liu, Wenke Fenyö, David Deep learning integrates histopathology and proteogenomics at a pan-cancer level |
title | Deep learning integrates histopathology and proteogenomics at a pan-cancer level |
title_full | Deep learning integrates histopathology and proteogenomics at a pan-cancer level |
title_fullStr | Deep learning integrates histopathology and proteogenomics at a pan-cancer level |
title_full_unstemmed | Deep learning integrates histopathology and proteogenomics at a pan-cancer level |
title_short | Deep learning integrates histopathology and proteogenomics at a pan-cancer level |
title_sort | deep learning integrates histopathology and proteogenomics at a pan-cancer level |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518635/ https://www.ncbi.nlm.nih.gov/pubmed/37582371 http://dx.doi.org/10.1016/j.xcrm.2023.101173 |
work_keys_str_mv | AT wangjoshuam deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT hongrunyu deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT demiccoelizabethg deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT tanjimin deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT lazcanorossana deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT moreiraandrel deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT liyize deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT calinawananna deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT razaviannarges deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT schrainktobias deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT gillettemichaela deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT omenngilberts deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT aneunkyung deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT rodriguezhenry deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT tsirigosaristotelis deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT ruggleskellyv deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT dingli deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT roblesanai deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT manidr deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT rodlandkarind deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT lazaralexanderj deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT liuwenke deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT fenyodavid deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel AT deeplearningintegrateshistopathologyandproteogenomicsatapancancerlevel |