Cargando…
Deep learning integrates histopathology and proteogenomics at a pan-cancer level
We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types f...
Autores principales: | Wang, Joshua M., Hong, Runyu, Demicco, Elizabeth G., Tan, Jimin, Lazcano, Rossana, Moreira, Andre L., Li, Yize, Calinawan, Anna, Razavian, Narges, Schraink, Tobias, Gillette, Michael A., Omenn, Gilbert S., An, Eunkyung, Rodriguez, Henry, Tsirigos, Aristotelis, Ruggles, Kelly V., Ding, Li, Robles, Ana I., Mani, D.R., Rodland, Karin D., Lazar, Alexander J., Liu, Wenke, Fenyö, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518635/ https://www.ncbi.nlm.nih.gov/pubmed/37582371 http://dx.doi.org/10.1016/j.xcrm.2023.101173 |
Ejemplares similares
-
Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models
por: Hong, Runyu, et al.
Publicado: (2021) -
Proteogenomics
Reveal the Overexpression of HLA-I
in Cancer
por: Wang, Ying, et al.
Publicado: (2023) -
Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy
por: Krug, Karsten, et al.
Publicado: (2020) -
Proteogenomics unveils mechanistic insights to precision oncology
por: Dou, Yongchao, et al.
Publicado: (2023) -
Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma
por: Clark, David J., et al.
Publicado: (2019)