Cargando…
Atomic-Level and Surface Structure of Calcium Silicate Hydrate Nanofoils
[Image: see text] Deciphering the calcium silicate hydrate (C-S-H) surface is crucial for unraveling the mechanisms of cement hydration and property development. Experimental observations of C-S-H in cement systems suggest a surface termination which is fundamentally different from the silicate-term...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518866/ https://www.ncbi.nlm.nih.gov/pubmed/37752905 http://dx.doi.org/10.1021/acs.jpcc.3c03350 |
Sumario: | [Image: see text] Deciphering the calcium silicate hydrate (C-S-H) surface is crucial for unraveling the mechanisms of cement hydration and property development. Experimental observations of C-S-H in cement systems suggest a surface termination which is fundamentally different from the silicate-terminated surface assumed in many atomistic level studies. Here, a new multiparameter approach to describing the (001) basal C-S-H surface is developed, which considers how the surface termination affects the overall properties (Ca/Si ratio, mean chain length, relative concentration of silanol and hydroxide groups). Contrary to current beliefs, it is concluded that the (001) C-S-H surface is dominantly calcium terminated. Finally, an adsorption mechanism for calcium and hydroxide ions is proposed, which is in agreement with the surface charge densities observed in previous studies. |
---|