Cargando…
Elucidating disease-associated mechanisms triggered by pollutants via the epigenetic landscape using large-scale ChIP-Seq data
BACKGROUND: Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene...
Autores principales: | Zou, Zhaonan, Yoshimura, Yuka, Yamanishi, Yoshihiro, Oki, Shinya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518938/ https://www.ncbi.nlm.nih.gov/pubmed/37743474 http://dx.doi.org/10.1186/s13072-023-00510-w |
Ejemplares similares
-
Epigenetic landscape of drug responses revealed through large-scale ChIP-seq data analyses
por: Zou, Zhaonan, et al.
Publicado: (2022) -
ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data
por: Zou, Zhaonan, et al.
Publicado: (2022) -
ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking
por: Wu, George, et al.
Publicado: (2013) -
ChIP‐Atlas: a data‐mining suite powered by full integration of public ChIP‐seq data
por: Oki, Shinya, et al.
Publicado: (2018) -
Shape-based peak identification for ChIP-Seq
por: Hower, Valerie, et al.
Publicado: (2011)