Cargando…
Multiple imputation using chained equations for missing data in survival models: applied to multidrug-resistant tuberculosis and HIV data
Background. Missing data are a prevalent problem in almost all types of data analyses, such as survival data analysis. Objective. To evaluate the performance of multivariable imputation via chained equations in determining the factors that affect the survival of multidrug-resistant-tuberculosis (MDR...
Autores principales: | Mbona, Sizwe Vincent, Ndlovu, Principal, Mwambi, Henry, Ramroop, Shaun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PAGEPress Publications, Pavia, Italy
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519120/ https://www.ncbi.nlm.nih.gov/pubmed/37753435 http://dx.doi.org/10.4081/jphia.2023.2388 |
Ejemplares similares
-
A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers
por: Crespo Turrado, Concepción, et al.
Publicado: (2015) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Multiple imputation for non-response when estimating HIV prevalence using survey data
por: Chinomona, Amos, et al.
Publicado: (2015) -
The Frailty Index, Missing Data, and Imputation
por: Pridham, Glen, et al.
Publicado: (2020)