Cargando…
A surgical Decision-making scoring model for spontaneous ventilation- and mechanical ventilation-video-assisted thoracoscopic surgery in non-small-cell lung cancer patients
BACKGROUNDS: Spontaneous ventilation-video-assisted thoracoscopic surgery (SV-VATS) has been applied to non-small cell lung cancer (NSCLC) patients in many centers. Since it remains a new and challenging surgical technique, only selected patients can be performed SV-VATS. We aim to conduct a retrosp...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519124/ https://www.ncbi.nlm.nih.gov/pubmed/37743499 http://dx.doi.org/10.1186/s12893-023-02150-z |
Sumario: | BACKGROUNDS: Spontaneous ventilation-video-assisted thoracoscopic surgery (SV-VATS) has been applied to non-small cell lung cancer (NSCLC) patients in many centers. Since it remains a new and challenging surgical technique, only selected patients can be performed SV-VATS. We aim to conduct a retrospective single-center study to develop a clinical decision-making model to make surgery decision between SV-VATS and MV (mechanical ventilation) -VATS in NSCLC patients more objectively and individually. METHODS: Four thousand three hundred sixty-eight NSCLC patients undergoing SV-VATS or MV-VATS in the department of thoracic surgery between 2011 and 2018 were included. Univariate and multivariate regression analysis were used to identify potential factors influencing the surgical decisions. Factors with statistical significance were selected for constructing the Surgical Decision-making Scoring (SDS) model. The performance of the model was validated by area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analysis (DCA). RESULTS: The Surgical Decision-making Scoring (SDS) model was built guided by the clinical judgment and statistically significant results of univariate and multivariate regression analyses of potential predictors, including smoking status (p = 0.03), BMI (p < 0.001), ACCI (p = 0.04), T stage (p < 0.001), N stage (p < 0.001), ASA grade (p < 0.001) and surgical technique (p < 0.001). The AUC of the training group and the testing group were 0.72 and 0.70, respectively. The calibration curves and the DCA curve revealed that the SDS model has a desired performance in predicting the surgical decision. CONCLUSIONS: This SDS model is the first clinical decision-making model developed for an individual NSCLC patient to make decision between SV-VATS and MV-VATS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12893-023-02150-z. |
---|