Cargando…
Integrating chromatin conformation information in a self-supervised learning model improves metagenome binning
Metagenome binning is a key step, downstream of metagenome assembly, to group scaffolds by their genome of origin. Although accurate binning has been achieved on datasets containing multiple samples from the same community, the completeness of binning is often low in datasets with a small number of...
Autores principales: | Ho, Harrison, Chovatia, Mansi, Egan, Rob, He, Guifen, Yoshinaga, Yuko, Liachko, Ivan, O’Malley, Ronan, Wang, Zhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519199/ https://www.ncbi.nlm.nih.gov/pubmed/37753177 http://dx.doi.org/10.7717/peerj.16129 |
Ejemplares similares
-
MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies
por: Kang, Dongwan D., et al.
Publicado: (2019) -
PhyBin: binning trees by topology
por: Newton, Ryan R., et al.
Publicado: (2013) -
PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes
por: Gregor, Ivan, et al.
Publicado: (2016) -
MetaBCC-LR: metagenomics binning by coverage and composition for long reads
por: Wickramarachchi, Anuradha, et al.
Publicado: (2020) -
Deconvoluting simulated metagenomes: the performance of hard- and soft- clustering algorithms applied to metagenomic chromosome conformation capture (3C)
por: DeMaere, Matthew Z., et al.
Publicado: (2016)