Cargando…

Noncanonical Rab9a action supports retromer-mediated endosomal exit of human papillomavirus during virus entry

Rab GTPases play key roles in controlling intracellular vesicular transport. GTP-bound Rab proteins support vesicle trafficking. Here, we report that, unlike cellular protein cargos, retromer-mediated delivery of human papillomaviruses (HPV) into the retrograde transport pathway during virus entry i...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Jeongjoon, DiMaio, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519607/
https://www.ncbi.nlm.nih.gov/pubmed/37703297
http://dx.doi.org/10.1371/journal.ppat.1011648
Descripción
Sumario:Rab GTPases play key roles in controlling intracellular vesicular transport. GTP-bound Rab proteins support vesicle trafficking. Here, we report that, unlike cellular protein cargos, retromer-mediated delivery of human papillomaviruses (HPV) into the retrograde transport pathway during virus entry is inhibited by Rab9a in its GTP-bound form. Knockdown of Rab9a inhibits HPV entry by modulating the HPV-retromer interaction and impairing retromer-mediated endosome-to-Golgi transport of the incoming virus, resulting in the accumulation of HPV in the endosome. Rab9a is in proximity to HPV as early as 3.5 h post-infection, prior to the Rab7-HPV interaction, and HPV displays increased association with retromer in Rab9a knockdown cells, even in the presence of dominant negative Rab7. Thus, Rab9a can regulate HPV-retromer association independently of Rab7. Surprisingly, excess GTP-Rab9a impairs HPV entry, whereas excess GDP-Rab9a reduces association between L2 and Rab9a and stimulates entry. These findings reveal that HPV and cellular proteins utilize the Rab9a host trafficking machinery in distinct ways during intracellular trafficking.