Cargando…

Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques

Data quality issues have been acknowledged as one of the greatest obstacles in medical artificial intelligence research. Here, we present DeepFundus, which employs deep learning techniques to perform multidimensional classification of fundus image quality and provide real-time guidance for on-site i...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lixue, Li, Mingyuan, Lin, Duoru, Yun, Dongyuan, Lin, Zhenzhe, Zhao, Lanqin, Pang, Jianyu, Li, Longhui, Wu, Yuxuan, Shang, Yuanjun, Lin, Haotian, Wu, Xiaohang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519839/
https://www.ncbi.nlm.nih.gov/pubmed/37733597
http://dx.doi.org/10.1016/j.xpro.2023.102565
_version_ 1785109782061907968
author Liu, Lixue
Li, Mingyuan
Lin, Duoru
Yun, Dongyuan
Lin, Zhenzhe
Zhao, Lanqin
Pang, Jianyu
Li, Longhui
Wu, Yuxuan
Shang, Yuanjun
Lin, Haotian
Wu, Xiaohang
author_facet Liu, Lixue
Li, Mingyuan
Lin, Duoru
Yun, Dongyuan
Lin, Zhenzhe
Zhao, Lanqin
Pang, Jianyu
Li, Longhui
Wu, Yuxuan
Shang, Yuanjun
Lin, Haotian
Wu, Xiaohang
author_sort Liu, Lixue
collection PubMed
description Data quality issues have been acknowledged as one of the greatest obstacles in medical artificial intelligence research. Here, we present DeepFundus, which employs deep learning techniques to perform multidimensional classification of fundus image quality and provide real-time guidance for on-site image acquisition. We describe steps for data preparation, model training, model inference, model evaluation, and the visualization of results using heatmaps. This protocol can be implemented in Python using either the suggested dataset or a customized dataset. For complete details on the use and execution of this protocol, please refer to Liu et al.(1)
format Online
Article
Text
id pubmed-10519839
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105198392023-09-27 Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques Liu, Lixue Li, Mingyuan Lin, Duoru Yun, Dongyuan Lin, Zhenzhe Zhao, Lanqin Pang, Jianyu Li, Longhui Wu, Yuxuan Shang, Yuanjun Lin, Haotian Wu, Xiaohang STAR Protoc Protocol Data quality issues have been acknowledged as one of the greatest obstacles in medical artificial intelligence research. Here, we present DeepFundus, which employs deep learning techniques to perform multidimensional classification of fundus image quality and provide real-time guidance for on-site image acquisition. We describe steps for data preparation, model training, model inference, model evaluation, and the visualization of results using heatmaps. This protocol can be implemented in Python using either the suggested dataset or a customized dataset. For complete details on the use and execution of this protocol, please refer to Liu et al.(1) Elsevier 2023-09-20 /pmc/articles/PMC10519839/ /pubmed/37733597 http://dx.doi.org/10.1016/j.xpro.2023.102565 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Liu, Lixue
Li, Mingyuan
Lin, Duoru
Yun, Dongyuan
Lin, Zhenzhe
Zhao, Lanqin
Pang, Jianyu
Li, Longhui
Wu, Yuxuan
Shang, Yuanjun
Lin, Haotian
Wu, Xiaohang
Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
title Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
title_full Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
title_fullStr Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
title_full_unstemmed Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
title_short Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
title_sort protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519839/
https://www.ncbi.nlm.nih.gov/pubmed/37733597
http://dx.doi.org/10.1016/j.xpro.2023.102565
work_keys_str_mv AT liulixue protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT limingyuan protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT linduoru protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT yundongyuan protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT linzhenzhe protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT zhaolanqin protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT pangjianyu protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT lilonghui protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT wuyuxuan protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT shangyuanjun protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT linhaotian protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques
AT wuxiaohang protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques