Cargando…
Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
Data quality issues have been acknowledged as one of the greatest obstacles in medical artificial intelligence research. Here, we present DeepFundus, which employs deep learning techniques to perform multidimensional classification of fundus image quality and provide real-time guidance for on-site i...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519839/ https://www.ncbi.nlm.nih.gov/pubmed/37733597 http://dx.doi.org/10.1016/j.xpro.2023.102565 |
_version_ | 1785109782061907968 |
---|---|
author | Liu, Lixue Li, Mingyuan Lin, Duoru Yun, Dongyuan Lin, Zhenzhe Zhao, Lanqin Pang, Jianyu Li, Longhui Wu, Yuxuan Shang, Yuanjun Lin, Haotian Wu, Xiaohang |
author_facet | Liu, Lixue Li, Mingyuan Lin, Duoru Yun, Dongyuan Lin, Zhenzhe Zhao, Lanqin Pang, Jianyu Li, Longhui Wu, Yuxuan Shang, Yuanjun Lin, Haotian Wu, Xiaohang |
author_sort | Liu, Lixue |
collection | PubMed |
description | Data quality issues have been acknowledged as one of the greatest obstacles in medical artificial intelligence research. Here, we present DeepFundus, which employs deep learning techniques to perform multidimensional classification of fundus image quality and provide real-time guidance for on-site image acquisition. We describe steps for data preparation, model training, model inference, model evaluation, and the visualization of results using heatmaps. This protocol can be implemented in Python using either the suggested dataset or a customized dataset. For complete details on the use and execution of this protocol, please refer to Liu et al.(1) |
format | Online Article Text |
id | pubmed-10519839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105198392023-09-27 Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques Liu, Lixue Li, Mingyuan Lin, Duoru Yun, Dongyuan Lin, Zhenzhe Zhao, Lanqin Pang, Jianyu Li, Longhui Wu, Yuxuan Shang, Yuanjun Lin, Haotian Wu, Xiaohang STAR Protoc Protocol Data quality issues have been acknowledged as one of the greatest obstacles in medical artificial intelligence research. Here, we present DeepFundus, which employs deep learning techniques to perform multidimensional classification of fundus image quality and provide real-time guidance for on-site image acquisition. We describe steps for data preparation, model training, model inference, model evaluation, and the visualization of results using heatmaps. This protocol can be implemented in Python using either the suggested dataset or a customized dataset. For complete details on the use and execution of this protocol, please refer to Liu et al.(1) Elsevier 2023-09-20 /pmc/articles/PMC10519839/ /pubmed/37733597 http://dx.doi.org/10.1016/j.xpro.2023.102565 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Protocol Liu, Lixue Li, Mingyuan Lin, Duoru Yun, Dongyuan Lin, Zhenzhe Zhao, Lanqin Pang, Jianyu Li, Longhui Wu, Yuxuan Shang, Yuanjun Lin, Haotian Wu, Xiaohang Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques |
title | Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques |
title_full | Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques |
title_fullStr | Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques |
title_full_unstemmed | Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques |
title_short | Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques |
title_sort | protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519839/ https://www.ncbi.nlm.nih.gov/pubmed/37733597 http://dx.doi.org/10.1016/j.xpro.2023.102565 |
work_keys_str_mv | AT liulixue protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT limingyuan protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT linduoru protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT yundongyuan protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT linzhenzhe protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT zhaolanqin protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT pangjianyu protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT lilonghui protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT wuyuxuan protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT shangyuanjun protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT linhaotian protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques AT wuxiaohang protocoltoanalyzefundusimagesformultidimensionalqualitygradingandrealtimeguidanceusingdeeplearningtechniques |