Cargando…
Cecal microbiota composition differs under normal and high ambient temperatures in genetically distinct chicken lines
Modern broilers, selected for high growth rate, are more susceptible to heat stress (HS) as compared to their ancestral jungle fowl (JF). HS affects epithelia barrier integrity, which is associated with gut microbiota. The aim of this study was to determine the effect of HS on the cecal luminal (CeL...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519933/ https://www.ncbi.nlm.nih.gov/pubmed/37749169 http://dx.doi.org/10.1038/s41598-023-43123-9 |
Sumario: | Modern broilers, selected for high growth rate, are more susceptible to heat stress (HS) as compared to their ancestral jungle fowl (JF). HS affects epithelia barrier integrity, which is associated with gut microbiota. The aim of this study was to determine the effect of HS on the cecal luminal (CeL) and cecal mucosal (CeM) microbiota in JF and three broiler populations: Athens Canadian Random Bred (ACRB), 1995 Random Bred (L1995), and Modern Random Bred (L2015). Broiler chicks were subjected to thermoneutral TN (24 °C) or chronic cyclic HS (8 h/day, 36 °C) condition from day 29 until day 56. HS affected richness in CeL microbiota in a line-dependent manner, decreasing richness in slow-growing JF and ACRB lines, while increasing richness in faster-growing L1995 and L2015. Microbiota were distinct between HS and TN conditions in CeL microbiota of all four lines and in CeM microbiota of L2015. Certain bacterial genera were also affected in a line-dependent manner, with HS tending to increase relative abundance in CeL microbiota of slow-growing lines, while decreases were common in fast-growing lines. Predictive functional analysis suggested a greater impact of HS on metabolic pathways in L2015 compared to other lines. |
---|