Cargando…

Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients

Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer’s evolutionary signatures tied t...

Descripción completa

Detalles Bibliográficos
Autores principales: Fontana, Diletta, Crespiatico, Ilaria, Crippa, Valentina, Malighetti, Federica, Villa, Matteo, Angaroni, Fabrizio, De Sano, Luca, Aroldi, Andrea, Antoniotti, Marco, Caravagna, Giulio, Piazza, Rocco, Graudenzi, Alex, Mologni, Luca, Ramazzotti, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519956/
https://www.ncbi.nlm.nih.gov/pubmed/37749078
http://dx.doi.org/10.1038/s41467-023-41670-3
_version_ 1785109804080955392
author Fontana, Diletta
Crespiatico, Ilaria
Crippa, Valentina
Malighetti, Federica
Villa, Matteo
Angaroni, Fabrizio
De Sano, Luca
Aroldi, Andrea
Antoniotti, Marco
Caravagna, Giulio
Piazza, Rocco
Graudenzi, Alex
Mologni, Luca
Ramazzotti, Daniele
author_facet Fontana, Diletta
Crespiatico, Ilaria
Crippa, Valentina
Malighetti, Federica
Villa, Matteo
Angaroni, Fabrizio
De Sano, Luca
Aroldi, Andrea
Antoniotti, Marco
Caravagna, Giulio
Piazza, Rocco
Graudenzi, Alex
Mologni, Luca
Ramazzotti, Daniele
author_sort Fontana, Diletta
collection PubMed
description Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer’s evolutionary signatures tied to distinct disease outcomes, representing “favored trajectories” of acquisition of driver mutations detected in patients with similar prognosis. We present a framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to extract such signatures from sequencing experiments generated by different technologies such as bulk and single-cell sequencing data. We apply ASCETIC to (i) single-cell data from 146 myeloid malignancy patients and bulk sequencing from 366 acute myeloid leukemia patients, (ii) multi-region sequencing from 100 early-stage lung cancer patients, (iii) exome/genome data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing from 25,000+ MSK-MET metastatic patients, revealing subtype-specific single-nucleotide variant signatures associated with distinct prognostic clusters. Validations on several datasets underscore the robustness and generalizability of the extracted signatures.
format Online
Article
Text
id pubmed-10519956
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105199562023-09-27 Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients Fontana, Diletta Crespiatico, Ilaria Crippa, Valentina Malighetti, Federica Villa, Matteo Angaroni, Fabrizio De Sano, Luca Aroldi, Andrea Antoniotti, Marco Caravagna, Giulio Piazza, Rocco Graudenzi, Alex Mologni, Luca Ramazzotti, Daniele Nat Commun Article Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer’s evolutionary signatures tied to distinct disease outcomes, representing “favored trajectories” of acquisition of driver mutations detected in patients with similar prognosis. We present a framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to extract such signatures from sequencing experiments generated by different technologies such as bulk and single-cell sequencing data. We apply ASCETIC to (i) single-cell data from 146 myeloid malignancy patients and bulk sequencing from 366 acute myeloid leukemia patients, (ii) multi-region sequencing from 100 early-stage lung cancer patients, (iii) exome/genome data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing from 25,000+ MSK-MET metastatic patients, revealing subtype-specific single-nucleotide variant signatures associated with distinct prognostic clusters. Validations on several datasets underscore the robustness and generalizability of the extracted signatures. Nature Publishing Group UK 2023-09-25 /pmc/articles/PMC10519956/ /pubmed/37749078 http://dx.doi.org/10.1038/s41467-023-41670-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Fontana, Diletta
Crespiatico, Ilaria
Crippa, Valentina
Malighetti, Federica
Villa, Matteo
Angaroni, Fabrizio
De Sano, Luca
Aroldi, Andrea
Antoniotti, Marco
Caravagna, Giulio
Piazza, Rocco
Graudenzi, Alex
Mologni, Luca
Ramazzotti, Daniele
Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
title Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
title_full Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
title_fullStr Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
title_full_unstemmed Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
title_short Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
title_sort evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519956/
https://www.ncbi.nlm.nih.gov/pubmed/37749078
http://dx.doi.org/10.1038/s41467-023-41670-3
work_keys_str_mv AT fontanadiletta evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT crespiaticoilaria evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT crippavalentina evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT malighettifederica evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT villamatteo evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT angaronifabrizio evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT desanoluca evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT aroldiandrea evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT antoniottimarco evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT caravagnagiulio evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT piazzarocco evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT graudenzialex evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT mologniluca evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients
AT ramazzottidaniele evolutionarysignaturesofhumancancersrevealedviagenomicanalysisofover35000patients