Cargando…
Convergence of the Laplace and the alternative multipole expansion approximation series for the Coulomb potential
Multipole expansion is a powerful technique used in many-body physics to solve dynamical problems involving correlated interactions between constituent particles. The Laplace multipole expansion series of the Coulomb potential is well established in literature. We compare its convergence with our re...
Autores principales: | Jobunga, E. O., Wandera, C. O., Okeyo, O. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520080/ https://www.ncbi.nlm.nih.gov/pubmed/37749130 http://dx.doi.org/10.1038/s41598-023-42724-8 |
Ejemplares similares
-
Multipole expansion of integral powers of cosine theta
por: Jobunga, E. O., et al.
Publicado: (2020) -
Phase of the Coulomb amplitude in the second Born approximation
por: Selyugin, O V
Publicado: (1996) -
The growth and approximation for an analytic function represented by Laplace–Stieltjes transforms with generalized order converging in the half plane
por: Xu, Hong Yan, et al.
Publicado: (2018) -
Animal Models and Integrated Nested Laplace Approximations
por: Holand, Anna Marie, et al.
Publicado: (2013) -
The approximation of Laplace-Stieltjes transforms with finite order
por: Xu, Hong Yan, et al.
Publicado: (2017)