Cargando…
Sharpen data-driven prediction rules of individual large earthquakes with aid of Fourier and Gauss
Predicting individual large earthquakes (EQs)’ locations, magnitudes, and timing remains unreachable. The author’s prior study shows that individual large EQs have unique signatures obtained from multi-layered data transformations. Via spatio-temporal convolutions, decades-long EQ catalog data are t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520116/ https://www.ncbi.nlm.nih.gov/pubmed/37749367 http://dx.doi.org/10.1038/s41598-023-43181-z |
Sumario: | Predicting individual large earthquakes (EQs)’ locations, magnitudes, and timing remains unreachable. The author’s prior study shows that individual large EQs have unique signatures obtained from multi-layered data transformations. Via spatio-temporal convolutions, decades-long EQ catalog data are transformed into pseudo-physics quantities (e.g., energy, power, vorticity, and Laplacian), which turn into surface-like information via Gauss curvatures. Using these new features, a rule-learning machine learning approach unravels promising prediction rules. This paper suggests further data transformation via Fourier transformation (FT). Results show that FT-based new feature can help sharpen the prediction rules. Feasibility tests of large EQs ([Formula: see text] 6.5) over the past 40 years in the western U.S. show promise, shedding light on data-driven prediction of individual large EQs. The handshake among ML methods, Fourier, and Gauss may help answer the long-standing enigma of seismogenesis. |
---|