Cargando…

Derivations and KMS-Symmetric Quantum Markov Semigroups

We prove that the generator of the [Formula: see text] implementation of a KMS-symmetric quantum Markov semigroup can be expressed as the square of a derivation with values in a Hilbert bimodule, extending earlier results by Cipriani and Sauvageot for tracially symmetric semigroups and the second-na...

Descripción completa

Detalles Bibliográficos
Autores principales: Vernooij, Matthijs, Wirth, Melchior
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520168/
https://www.ncbi.nlm.nih.gov/pubmed/37766789
http://dx.doi.org/10.1007/s00220-023-04795-6
Descripción
Sumario:We prove that the generator of the [Formula: see text] implementation of a KMS-symmetric quantum Markov semigroup can be expressed as the square of a derivation with values in a Hilbert bimodule, extending earlier results by Cipriani and Sauvageot for tracially symmetric semigroups and the second-named author for GNS-symmetric semigroups. This result hinges on the introduction of a new completely positive map on the algebra of bounded operators on the GNS Hilbert space. This transformation maps symmetric Markov operators to symmetric Markov operators and is essential to obtain the required inner product on the Hilbert bimodule.