Cargando…

Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images

We proposed a bimodal artificial intelligence that integrates patient information with images to diagnose spinal cord tumors. Our model combines TabNet, a state-of-the-art deep learning model for tabular data for patient information, and a convolutional neural network for images. As training data, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Kita, Kosuke, Fujimori, Takahito, Suzuki, Yuki, Kanie, Yuya, Takenaka, Shota, Kaito, Takashi, Taki, Takuyu, Ukon, Yuichiro, Furuya, Masayuki, Saiwai, Hirokazu, Nakajima, Nozomu, Sugiura, Tsuyoshi, Ishiguro, Hiroyuki, Kamatani, Takashi, Tsukazaki, Hiroyuki, Sakai, Yusuke, Takami, Haruna, Tateiwa, Daisuke, Hashimoto, Kunihiko, Wataya, Tomohiro, Nishigaki, Daiki, Sato, Junya, Hoshiyama, Masaki, Tomiyama, Noriyuki, Okada, Seiji, Kido, Shoji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520519/
https://www.ncbi.nlm.nih.gov/pubmed/37766987
http://dx.doi.org/10.1016/j.isci.2023.107900
_version_ 1785109937605574656
author Kita, Kosuke
Fujimori, Takahito
Suzuki, Yuki
Kanie, Yuya
Takenaka, Shota
Kaito, Takashi
Taki, Takuyu
Ukon, Yuichiro
Furuya, Masayuki
Saiwai, Hirokazu
Nakajima, Nozomu
Sugiura, Tsuyoshi
Ishiguro, Hiroyuki
Kamatani, Takashi
Tsukazaki, Hiroyuki
Sakai, Yusuke
Takami, Haruna
Tateiwa, Daisuke
Hashimoto, Kunihiko
Wataya, Tomohiro
Nishigaki, Daiki
Sato, Junya
Hoshiyama, Masaki
Tomiyama, Noriyuki
Okada, Seiji
Kido, Shoji
author_facet Kita, Kosuke
Fujimori, Takahito
Suzuki, Yuki
Kanie, Yuya
Takenaka, Shota
Kaito, Takashi
Taki, Takuyu
Ukon, Yuichiro
Furuya, Masayuki
Saiwai, Hirokazu
Nakajima, Nozomu
Sugiura, Tsuyoshi
Ishiguro, Hiroyuki
Kamatani, Takashi
Tsukazaki, Hiroyuki
Sakai, Yusuke
Takami, Haruna
Tateiwa, Daisuke
Hashimoto, Kunihiko
Wataya, Tomohiro
Nishigaki, Daiki
Sato, Junya
Hoshiyama, Masaki
Tomiyama, Noriyuki
Okada, Seiji
Kido, Shoji
author_sort Kita, Kosuke
collection PubMed
description We proposed a bimodal artificial intelligence that integrates patient information with images to diagnose spinal cord tumors. Our model combines TabNet, a state-of-the-art deep learning model for tabular data for patient information, and a convolutional neural network for images. As training data, we collected 259 spinal tumor patients (158 for schwannoma and 101 for meningioma). We compared the performance of the image-only unimodal model, table-only unimodal model, bimodal model using a gradient-boosting decision tree, and bimodal model using TabNet. Our proposed bimodal model using TabNet performed best (area under the receiver-operating characteristic curve [AUROC]: 0.91) in the training data and significantly outperformed the physicians' performance. In the external validation using 62 cases from the other two facilities, our bimodal model showed an AUROC of 0.92, proving the robustness of the model. The bimodal analysis using TabNet was effective for differentiating spinal tumors.
format Online
Article
Text
id pubmed-10520519
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105205192023-09-27 Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images Kita, Kosuke Fujimori, Takahito Suzuki, Yuki Kanie, Yuya Takenaka, Shota Kaito, Takashi Taki, Takuyu Ukon, Yuichiro Furuya, Masayuki Saiwai, Hirokazu Nakajima, Nozomu Sugiura, Tsuyoshi Ishiguro, Hiroyuki Kamatani, Takashi Tsukazaki, Hiroyuki Sakai, Yusuke Takami, Haruna Tateiwa, Daisuke Hashimoto, Kunihiko Wataya, Tomohiro Nishigaki, Daiki Sato, Junya Hoshiyama, Masaki Tomiyama, Noriyuki Okada, Seiji Kido, Shoji iScience Article We proposed a bimodal artificial intelligence that integrates patient information with images to diagnose spinal cord tumors. Our model combines TabNet, a state-of-the-art deep learning model for tabular data for patient information, and a convolutional neural network for images. As training data, we collected 259 spinal tumor patients (158 for schwannoma and 101 for meningioma). We compared the performance of the image-only unimodal model, table-only unimodal model, bimodal model using a gradient-boosting decision tree, and bimodal model using TabNet. Our proposed bimodal model using TabNet performed best (area under the receiver-operating characteristic curve [AUROC]: 0.91) in the training data and significantly outperformed the physicians' performance. In the external validation using 62 cases from the other two facilities, our bimodal model showed an AUROC of 0.92, proving the robustness of the model. The bimodal analysis using TabNet was effective for differentiating spinal tumors. Elsevier 2023-09-14 /pmc/articles/PMC10520519/ /pubmed/37766987 http://dx.doi.org/10.1016/j.isci.2023.107900 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Kita, Kosuke
Fujimori, Takahito
Suzuki, Yuki
Kanie, Yuya
Takenaka, Shota
Kaito, Takashi
Taki, Takuyu
Ukon, Yuichiro
Furuya, Masayuki
Saiwai, Hirokazu
Nakajima, Nozomu
Sugiura, Tsuyoshi
Ishiguro, Hiroyuki
Kamatani, Takashi
Tsukazaki, Hiroyuki
Sakai, Yusuke
Takami, Haruna
Tateiwa, Daisuke
Hashimoto, Kunihiko
Wataya, Tomohiro
Nishigaki, Daiki
Sato, Junya
Hoshiyama, Masaki
Tomiyama, Noriyuki
Okada, Seiji
Kido, Shoji
Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
title Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
title_full Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
title_fullStr Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
title_full_unstemmed Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
title_short Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
title_sort bimodal artificial intelligence using tabnet for differentiating spinal cord tumors—integration of patient background information and images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520519/
https://www.ncbi.nlm.nih.gov/pubmed/37766987
http://dx.doi.org/10.1016/j.isci.2023.107900
work_keys_str_mv AT kitakosuke bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT fujimoritakahito bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT suzukiyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT kanieyuya bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT takenakashota bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT kaitotakashi bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT takitakuyu bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT ukonyuichiro bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT furuyamasayuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT saiwaihirokazu bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT nakajimanozomu bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT sugiuratsuyoshi bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT ishigurohiroyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT kamatanitakashi bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT tsukazakihiroyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT sakaiyusuke bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT takamiharuna bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT tateiwadaisuke bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT hashimotokunihiko bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT watayatomohiro bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT nishigakidaiki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT satojunya bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT hoshiyamamasaki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT tomiyamanoriyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT okadaseiji bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages
AT kidoshoji bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages