Cargando…
Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
We proposed a bimodal artificial intelligence that integrates patient information with images to diagnose spinal cord tumors. Our model combines TabNet, a state-of-the-art deep learning model for tabular data for patient information, and a convolutional neural network for images. As training data, w...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520519/ https://www.ncbi.nlm.nih.gov/pubmed/37766987 http://dx.doi.org/10.1016/j.isci.2023.107900 |
_version_ | 1785109937605574656 |
---|---|
author | Kita, Kosuke Fujimori, Takahito Suzuki, Yuki Kanie, Yuya Takenaka, Shota Kaito, Takashi Taki, Takuyu Ukon, Yuichiro Furuya, Masayuki Saiwai, Hirokazu Nakajima, Nozomu Sugiura, Tsuyoshi Ishiguro, Hiroyuki Kamatani, Takashi Tsukazaki, Hiroyuki Sakai, Yusuke Takami, Haruna Tateiwa, Daisuke Hashimoto, Kunihiko Wataya, Tomohiro Nishigaki, Daiki Sato, Junya Hoshiyama, Masaki Tomiyama, Noriyuki Okada, Seiji Kido, Shoji |
author_facet | Kita, Kosuke Fujimori, Takahito Suzuki, Yuki Kanie, Yuya Takenaka, Shota Kaito, Takashi Taki, Takuyu Ukon, Yuichiro Furuya, Masayuki Saiwai, Hirokazu Nakajima, Nozomu Sugiura, Tsuyoshi Ishiguro, Hiroyuki Kamatani, Takashi Tsukazaki, Hiroyuki Sakai, Yusuke Takami, Haruna Tateiwa, Daisuke Hashimoto, Kunihiko Wataya, Tomohiro Nishigaki, Daiki Sato, Junya Hoshiyama, Masaki Tomiyama, Noriyuki Okada, Seiji Kido, Shoji |
author_sort | Kita, Kosuke |
collection | PubMed |
description | We proposed a bimodal artificial intelligence that integrates patient information with images to diagnose spinal cord tumors. Our model combines TabNet, a state-of-the-art deep learning model for tabular data for patient information, and a convolutional neural network for images. As training data, we collected 259 spinal tumor patients (158 for schwannoma and 101 for meningioma). We compared the performance of the image-only unimodal model, table-only unimodal model, bimodal model using a gradient-boosting decision tree, and bimodal model using TabNet. Our proposed bimodal model using TabNet performed best (area under the receiver-operating characteristic curve [AUROC]: 0.91) in the training data and significantly outperformed the physicians' performance. In the external validation using 62 cases from the other two facilities, our bimodal model showed an AUROC of 0.92, proving the robustness of the model. The bimodal analysis using TabNet was effective for differentiating spinal tumors. |
format | Online Article Text |
id | pubmed-10520519 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105205192023-09-27 Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images Kita, Kosuke Fujimori, Takahito Suzuki, Yuki Kanie, Yuya Takenaka, Shota Kaito, Takashi Taki, Takuyu Ukon, Yuichiro Furuya, Masayuki Saiwai, Hirokazu Nakajima, Nozomu Sugiura, Tsuyoshi Ishiguro, Hiroyuki Kamatani, Takashi Tsukazaki, Hiroyuki Sakai, Yusuke Takami, Haruna Tateiwa, Daisuke Hashimoto, Kunihiko Wataya, Tomohiro Nishigaki, Daiki Sato, Junya Hoshiyama, Masaki Tomiyama, Noriyuki Okada, Seiji Kido, Shoji iScience Article We proposed a bimodal artificial intelligence that integrates patient information with images to diagnose spinal cord tumors. Our model combines TabNet, a state-of-the-art deep learning model for tabular data for patient information, and a convolutional neural network for images. As training data, we collected 259 spinal tumor patients (158 for schwannoma and 101 for meningioma). We compared the performance of the image-only unimodal model, table-only unimodal model, bimodal model using a gradient-boosting decision tree, and bimodal model using TabNet. Our proposed bimodal model using TabNet performed best (area under the receiver-operating characteristic curve [AUROC]: 0.91) in the training data and significantly outperformed the physicians' performance. In the external validation using 62 cases from the other two facilities, our bimodal model showed an AUROC of 0.92, proving the robustness of the model. The bimodal analysis using TabNet was effective for differentiating spinal tumors. Elsevier 2023-09-14 /pmc/articles/PMC10520519/ /pubmed/37766987 http://dx.doi.org/10.1016/j.isci.2023.107900 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Kita, Kosuke Fujimori, Takahito Suzuki, Yuki Kanie, Yuya Takenaka, Shota Kaito, Takashi Taki, Takuyu Ukon, Yuichiro Furuya, Masayuki Saiwai, Hirokazu Nakajima, Nozomu Sugiura, Tsuyoshi Ishiguro, Hiroyuki Kamatani, Takashi Tsukazaki, Hiroyuki Sakai, Yusuke Takami, Haruna Tateiwa, Daisuke Hashimoto, Kunihiko Wataya, Tomohiro Nishigaki, Daiki Sato, Junya Hoshiyama, Masaki Tomiyama, Noriyuki Okada, Seiji Kido, Shoji Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images |
title | Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images |
title_full | Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images |
title_fullStr | Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images |
title_full_unstemmed | Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images |
title_short | Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images |
title_sort | bimodal artificial intelligence using tabnet for differentiating spinal cord tumors—integration of patient background information and images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520519/ https://www.ncbi.nlm.nih.gov/pubmed/37766987 http://dx.doi.org/10.1016/j.isci.2023.107900 |
work_keys_str_mv | AT kitakosuke bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT fujimoritakahito bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT suzukiyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT kanieyuya bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT takenakashota bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT kaitotakashi bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT takitakuyu bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT ukonyuichiro bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT furuyamasayuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT saiwaihirokazu bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT nakajimanozomu bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT sugiuratsuyoshi bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT ishigurohiroyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT kamatanitakashi bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT tsukazakihiroyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT sakaiyusuke bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT takamiharuna bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT tateiwadaisuke bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT hashimotokunihiko bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT watayatomohiro bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT nishigakidaiki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT satojunya bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT hoshiyamamasaki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT tomiyamanoriyuki bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT okadaseiji bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages AT kidoshoji bimodalartificialintelligenceusingtabnetfordifferentiatingspinalcordtumorsintegrationofpatientbackgroundinformationandimages |