Cargando…

Cortical gyrification differences between early- and late-onset obsessive–compulsive disorder: neurobiological evidence for neurodevelopmentally distinct subtypes

BACKGROUND: Identifying more homogenous subtypes of patients with obsessive–compulsive disorder (OCD) using biological evidence is critical for understanding complexities of the disorder in this heterogeneous population. Age of onset serves as a useful subtyping scheme for distinguishing OCD into tw...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Inkyung, Ha, Minji, Kim, Taekwan, Lho, Silvia Kyungjin, Moon, Sun-Young, Kim, Minah, Kwon, Jun Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520599/
https://www.ncbi.nlm.nih.gov/pubmed/36259417
http://dx.doi.org/10.1017/S0033291722003129
Descripción
Sumario:BACKGROUND: Identifying more homogenous subtypes of patients with obsessive–compulsive disorder (OCD) using biological evidence is critical for understanding complexities of the disorder in this heterogeneous population. Age of onset serves as a useful subtyping scheme for distinguishing OCD into two subgroups that aligns with neurodevelopmental perspectives. The underlying neurobiological markers for these distinct neurodevelopmental differences can be identified by investigating gyrification changes to establish biological evidence-based homogeneous subtypes. METHODS: We compared whole-brain cortical gyrification in 84 patients with early-onset OCD, 84 patients with late-onset OCD, and 152 healthy controls (HCs) to identify potential markers for early neurodevelopmental deficits using the local gyrification index (lGI). Then, the relationships between lGI in clusters showing significant differences and performance in visuospatial memory and verbal fluency, which are considered trait-related neurocognitive impairments in OCD, were further examined in early-onset OCD patients. RESULTS: The early-onset OCD patients exhibited significantly greater gyrification than those with late-onset OCD patients and HCs in frontoparietal and cingulate regions, including the bilateral precentral, postcentral, precuneus, paracentral, posterior cingulate, superior frontal, and caudal anterior cingulate gyri. Moreover, impaired neurocognitive functions in early-onset OCD patients were correlated with increased gyrification. CONCLUSIONS: Our findings provide a neurobiological marker to distinguish the OCD population into more neurodevelopmentally homogeneous subtypes, which may contribute to the understanding of the neurodevelopmental underpinnings of an etiology in early-onset OCD consistent with the accumulated phenotypic evidence of greater neurodevelopmental deficits in early-onset OCD than in late-onset OCD.