Cargando…
Directional design of carboxylic acid coordination number fine-tuned space structure to improve the output performance of nanogenerators
The emergence of nanogenerators, which provide a way to obtain mechanical energy from the environment and to collect and transmit tiny amounts of energy, has attracted a lot of attention. MOFs, because of their diverse structures as well as stable pores and large specific surface area, have very sig...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520612/ https://www.ncbi.nlm.nih.gov/pubmed/37767118 http://dx.doi.org/10.1039/d3ra05327j |
Sumario: | The emergence of nanogenerators, which provide a way to obtain mechanical energy from the environment and to collect and transmit tiny amounts of energy, has attracted a lot of attention. MOFs, because of their diverse structures as well as stable pores and large specific surface area, have very significant advantages to be used as nanogenerator materials. In this paper, two MOFs with similar spatial structures are designed to take advantage of the different coordination numbers of carboxylic acids to achieve the regulation of their microstructures. The output performance of friction power generation was found to be affected significantly by their microstructures. The friction power generation performance improved with the increase of carboxylic acids, and the obtained polyacid ligand materials can be used for light bulb illumination, which is a step forward for the practical exploration. |
---|