Cargando…

Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon

Two‐dimensional dopant layers (δ‐layers) in semiconductors provide the high‐mobility electron liquids (2DELs) needed for nanoscale quantum‐electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quan...

Descripción completa

Detalles Bibliográficos
Autores principales: Constantinou, Procopios, Stock, Taylor J. Z., Crane, Eleanor, Kölker, Alexander, van Loon, Marcel, Li, Juerong, Fearn, Sarah, Bornemann, Henric, D'Anna, Nicolò, Fisher, Andrew J., Strocov, Vladimir N., Aeppli, Gabriel, Curson, Neil J., Schofield, Steven R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520640/
https://www.ncbi.nlm.nih.gov/pubmed/37469010
http://dx.doi.org/10.1002/advs.202302101
_version_ 1785109964790956032
author Constantinou, Procopios
Stock, Taylor J. Z.
Crane, Eleanor
Kölker, Alexander
van Loon, Marcel
Li, Juerong
Fearn, Sarah
Bornemann, Henric
D'Anna, Nicolò
Fisher, Andrew J.
Strocov, Vladimir N.
Aeppli, Gabriel
Curson, Neil J.
Schofield, Steven R.
author_facet Constantinou, Procopios
Stock, Taylor J. Z.
Crane, Eleanor
Kölker, Alexander
van Loon, Marcel
Li, Juerong
Fearn, Sarah
Bornemann, Henric
D'Anna, Nicolò
Fisher, Andrew J.
Strocov, Vladimir N.
Aeppli, Gabriel
Curson, Neil J.
Schofield, Steven R.
author_sort Constantinou, Procopios
collection PubMed
description Two‐dimensional dopant layers (δ‐layers) in semiconductors provide the high‐mobility electron liquids (2DELs) needed for nanoscale quantum‐electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quantum magnetotransport. In principle, the parameters are immediately readable from the one‐electron spectral function that can be measured by angle‐resolved photoemission spectroscopy (ARPES). Here, buried 2DEL δ‐layers in silicon are measured with soft X‐ray (SX) ARPES to obtain detailed information about their filled conduction bands and extract device‐relevant properties. This study takes advantage of the larger probing depth and photon energy range of SX‐ARPES relative to vacuum ultraviolet (VUV) ARPES to accurately measure the δ‐layer electronic confinement. The measurements are made on ambient‐exposed samples and yield extremely thin (< 1 nm) and dense (≈10(14) cm(−2)) 2DELs. Critically, this method is used to show that δ‐layers of arsenic exhibit better electronic confinement than δ‐layers of phosphorus fabricated under identical conditions.
format Online
Article
Text
id pubmed-10520640
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105206402023-09-27 Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon Constantinou, Procopios Stock, Taylor J. Z. Crane, Eleanor Kölker, Alexander van Loon, Marcel Li, Juerong Fearn, Sarah Bornemann, Henric D'Anna, Nicolò Fisher, Andrew J. Strocov, Vladimir N. Aeppli, Gabriel Curson, Neil J. Schofield, Steven R. Adv Sci (Weinh) Research Articles Two‐dimensional dopant layers (δ‐layers) in semiconductors provide the high‐mobility electron liquids (2DELs) needed for nanoscale quantum‐electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quantum magnetotransport. In principle, the parameters are immediately readable from the one‐electron spectral function that can be measured by angle‐resolved photoemission spectroscopy (ARPES). Here, buried 2DEL δ‐layers in silicon are measured with soft X‐ray (SX) ARPES to obtain detailed information about their filled conduction bands and extract device‐relevant properties. This study takes advantage of the larger probing depth and photon energy range of SX‐ARPES relative to vacuum ultraviolet (VUV) ARPES to accurately measure the δ‐layer electronic confinement. The measurements are made on ambient‐exposed samples and yield extremely thin (< 1 nm) and dense (≈10(14) cm(−2)) 2DELs. Critically, this method is used to show that δ‐layers of arsenic exhibit better electronic confinement than δ‐layers of phosphorus fabricated under identical conditions. John Wiley and Sons Inc. 2023-07-19 /pmc/articles/PMC10520640/ /pubmed/37469010 http://dx.doi.org/10.1002/advs.202302101 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Constantinou, Procopios
Stock, Taylor J. Z.
Crane, Eleanor
Kölker, Alexander
van Loon, Marcel
Li, Juerong
Fearn, Sarah
Bornemann, Henric
D'Anna, Nicolò
Fisher, Andrew J.
Strocov, Vladimir N.
Aeppli, Gabriel
Curson, Neil J.
Schofield, Steven R.
Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon
title Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon
title_full Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon
title_fullStr Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon
title_full_unstemmed Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon
title_short Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in δ‐Doped Silicon
title_sort momentum‐space imaging of ultra‐thin electron liquids in δ‐doped silicon
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520640/
https://www.ncbi.nlm.nih.gov/pubmed/37469010
http://dx.doi.org/10.1002/advs.202302101
work_keys_str_mv AT constantinouprocopios momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT stocktaylorjz momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT craneeleanor momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT kolkeralexander momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT vanloonmarcel momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT lijuerong momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT fearnsarah momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT bornemannhenric momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT dannanicolo momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT fisherandrewj momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT strocovvladimirn momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT aeppligabriel momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT cursonneilj momentumspaceimagingofultrathinelectronliquidsinddopedsilicon
AT schofieldstevenr momentumspaceimagingofultrathinelectronliquidsinddopedsilicon