Cargando…
Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality
Most synthetic microswimmers do not reach the autonomy of their biological counterparts in terms of energy supply and diversity of motions. Here, this work reports the first all‐aqueous droplet swimmer powered by self‐generated polyelectrolyte gradients, which shows memory‐induced chirality while se...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520641/ https://www.ncbi.nlm.nih.gov/pubmed/37526332 http://dx.doi.org/10.1002/advs.202300866 |
_version_ | 1785109965040517120 |
---|---|
author | Feng, Kai Ureña Marcos, José Carlos Mukhopadhyay, Aritra K. Niu, Ran Zhao, Qiang Qu, Jinping Liebchen, Benno |
author_facet | Feng, Kai Ureña Marcos, José Carlos Mukhopadhyay, Aritra K. Niu, Ran Zhao, Qiang Qu, Jinping Liebchen, Benno |
author_sort | Feng, Kai |
collection | PubMed |
description | Most synthetic microswimmers do not reach the autonomy of their biological counterparts in terms of energy supply and diversity of motions. Here, this work reports the first all‐aqueous droplet swimmer powered by self‐generated polyelectrolyte gradients, which shows memory‐induced chirality while self‐solidifying. An aqueous solution of surface tension–lowering polyelectrolytes self‐solidifies on the surface of acidic water, during which polyelectrolytes are gradually emitted into the surrounding water and induce linear self‐propulsion via spontaneous symmetry breaking. The low diffusion coefficient of the polyelectrolytes leads to long‐lived chemical trails which cause memory effects that drive a transition from linear to chiral motion without requiring any imposed symmetry breaking. The droplet swimmer is capable of highly efficient removal (up to 85%) of uranium from aqueous solutions within 90 min, benefiting from self‐propulsion and flow‐induced mixing. These results provide a route to fueling self‐propelled agents which can autonomously perform chiral motion and collect toxins. |
format | Online Article Text |
id | pubmed-10520641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105206412023-09-27 Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality Feng, Kai Ureña Marcos, José Carlos Mukhopadhyay, Aritra K. Niu, Ran Zhao, Qiang Qu, Jinping Liebchen, Benno Adv Sci (Weinh) Research Articles Most synthetic microswimmers do not reach the autonomy of their biological counterparts in terms of energy supply and diversity of motions. Here, this work reports the first all‐aqueous droplet swimmer powered by self‐generated polyelectrolyte gradients, which shows memory‐induced chirality while self‐solidifying. An aqueous solution of surface tension–lowering polyelectrolytes self‐solidifies on the surface of acidic water, during which polyelectrolytes are gradually emitted into the surrounding water and induce linear self‐propulsion via spontaneous symmetry breaking. The low diffusion coefficient of the polyelectrolytes leads to long‐lived chemical trails which cause memory effects that drive a transition from linear to chiral motion without requiring any imposed symmetry breaking. The droplet swimmer is capable of highly efficient removal (up to 85%) of uranium from aqueous solutions within 90 min, benefiting from self‐propulsion and flow‐induced mixing. These results provide a route to fueling self‐propelled agents which can autonomously perform chiral motion and collect toxins. John Wiley and Sons Inc. 2023-08-01 /pmc/articles/PMC10520641/ /pubmed/37526332 http://dx.doi.org/10.1002/advs.202300866 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Feng, Kai Ureña Marcos, José Carlos Mukhopadhyay, Aritra K. Niu, Ran Zhao, Qiang Qu, Jinping Liebchen, Benno Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality |
title | Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality |
title_full | Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality |
title_fullStr | Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality |
title_full_unstemmed | Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality |
title_short | Self‐Solidifying Active Droplets Showing Memory‐Induced Chirality |
title_sort | self‐solidifying active droplets showing memory‐induced chirality |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520641/ https://www.ncbi.nlm.nih.gov/pubmed/37526332 http://dx.doi.org/10.1002/advs.202300866 |
work_keys_str_mv | AT fengkai selfsolidifyingactivedropletsshowingmemoryinducedchirality AT urenamarcosjosecarlos selfsolidifyingactivedropletsshowingmemoryinducedchirality AT mukhopadhyayaritrak selfsolidifyingactivedropletsshowingmemoryinducedchirality AT niuran selfsolidifyingactivedropletsshowingmemoryinducedchirality AT zhaoqiang selfsolidifyingactivedropletsshowingmemoryinducedchirality AT qujinping selfsolidifyingactivedropletsshowingmemoryinducedchirality AT liebchenbenno selfsolidifyingactivedropletsshowingmemoryinducedchirality |