Cargando…

Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction

High‐content time‐lapse embryo imaging assessed by machine learning is revolutionizing the field of in vitro fertilization (IVF). However, the vast majority of IVF embryos are not transferred to the uterus, and these masses of embryos with unknown implantation outcomes are ignored in current efforts...

Descripción completa

Detalles Bibliográficos
Autores principales: Tzukerman, Noam, Rotem, Oded, Shapiro, Maya Tsarfati, Maor, Ron, Meseguer, Marcos, Gilboa, Daniella, Seidman, Daniel S., Zaritsky, Assaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520665/
https://www.ncbi.nlm.nih.gov/pubmed/37507828
http://dx.doi.org/10.1002/advs.202207711
_version_ 1785109970708070400
author Tzukerman, Noam
Rotem, Oded
Shapiro, Maya Tsarfati
Maor, Ron
Meseguer, Marcos
Gilboa, Daniella
Seidman, Daniel S.
Zaritsky, Assaf
author_facet Tzukerman, Noam
Rotem, Oded
Shapiro, Maya Tsarfati
Maor, Ron
Meseguer, Marcos
Gilboa, Daniella
Seidman, Daniel S.
Zaritsky, Assaf
author_sort Tzukerman, Noam
collection PubMed
description High‐content time‐lapse embryo imaging assessed by machine learning is revolutionizing the field of in vitro fertilization (IVF). However, the vast majority of IVF embryos are not transferred to the uterus, and these masses of embryos with unknown implantation outcomes are ignored in current efforts that aim to predict implantation. Here, whether, and to what extent the information encoded within “sibling” embryos from the same IVF cohort contributes to the performance of machine learning‐based implantation prediction is explored. First, it is shown that the implantation outcome is correlated with attributes derived from the cohort siblings. Second, it is demonstrated that this unlabeled data boosts implantation prediction performance. Third, the cohort properties driving embryo prediction, especially those that rescued erroneous predictions, are characterized. The results suggest that predictive models for embryo implantation can benefit from the overlooked, widely available unlabeled data of sibling embryos by reducing the inherent noise of the individual transferred embryo.
format Online
Article
Text
id pubmed-10520665
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-105206652023-09-27 Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction Tzukerman, Noam Rotem, Oded Shapiro, Maya Tsarfati Maor, Ron Meseguer, Marcos Gilboa, Daniella Seidman, Daniel S. Zaritsky, Assaf Adv Sci (Weinh) Research Article High‐content time‐lapse embryo imaging assessed by machine learning is revolutionizing the field of in vitro fertilization (IVF). However, the vast majority of IVF embryos are not transferred to the uterus, and these masses of embryos with unknown implantation outcomes are ignored in current efforts that aim to predict implantation. Here, whether, and to what extent the information encoded within “sibling” embryos from the same IVF cohort contributes to the performance of machine learning‐based implantation prediction is explored. First, it is shown that the implantation outcome is correlated with attributes derived from the cohort siblings. Second, it is demonstrated that this unlabeled data boosts implantation prediction performance. Third, the cohort properties driving embryo prediction, especially those that rescued erroneous predictions, are characterized. The results suggest that predictive models for embryo implantation can benefit from the overlooked, widely available unlabeled data of sibling embryos by reducing the inherent noise of the individual transferred embryo. John Wiley and Sons Inc. 2023-07-28 /pmc/articles/PMC10520665/ /pubmed/37507828 http://dx.doi.org/10.1002/advs.202207711 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Tzukerman, Noam
Rotem, Oded
Shapiro, Maya Tsarfati
Maor, Ron
Meseguer, Marcos
Gilboa, Daniella
Seidman, Daniel S.
Zaritsky, Assaf
Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction
title Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction
title_full Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction
title_fullStr Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction
title_full_unstemmed Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction
title_short Using Unlabeled Information of Embryo Siblings from the Same Cohort Cycle to Enhance In Vitro Fertilization Implantation Prediction
title_sort using unlabeled information of embryo siblings from the same cohort cycle to enhance in vitro fertilization implantation prediction
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520665/
https://www.ncbi.nlm.nih.gov/pubmed/37507828
http://dx.doi.org/10.1002/advs.202207711
work_keys_str_mv AT tzukermannoam usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction
AT rotemoded usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction
AT shapiromayatsarfati usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction
AT maorron usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction
AT meseguermarcos usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction
AT gilboadaniella usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction
AT seidmandaniels usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction
AT zaritskyassaf usingunlabeledinformationofembryosiblingsfromthesamecohortcycletoenhanceinvitrofertilizationimplantationprediction