Cargando…

Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study

Detalles Bibliográficos
Autores principales: Sezgin, Emre, Chekeni, Faraaz, Lee, Jennifer, Keim, Sarah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520763/
https://www.ncbi.nlm.nih.gov/pubmed/37695668
http://dx.doi.org/10.2196/49240
_version_ 1785109993166471168
author Sezgin, Emre
Chekeni, Faraaz
Lee, Jennifer
Keim, Sarah
author_facet Sezgin, Emre
Chekeni, Faraaz
Lee, Jennifer
Keim, Sarah
author_sort Sezgin, Emre
collection PubMed
description
format Online
Article
Text
id pubmed-10520763
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-105207632023-09-27 Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study Sezgin, Emre Chekeni, Faraaz Lee, Jennifer Keim, Sarah J Med Internet Res Research Letter JMIR Publications 2023-09-11 /pmc/articles/PMC10520763/ /pubmed/37695668 http://dx.doi.org/10.2196/49240 Text en ©Emre Sezgin, Faraaz Chekeni, Jennifer Lee, Sarah Keim. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 11.09.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Research Letter
Sezgin, Emre
Chekeni, Faraaz
Lee, Jennifer
Keim, Sarah
Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study
title Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study
title_full Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study
title_fullStr Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study
title_full_unstemmed Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study
title_short Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study
title_sort clinical accuracy of large language models and google search responses to postpartum depression questions: cross-sectional study
topic Research Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520763/
https://www.ncbi.nlm.nih.gov/pubmed/37695668
http://dx.doi.org/10.2196/49240
work_keys_str_mv AT sezginemre clinicalaccuracyoflargelanguagemodelsandgooglesearchresponsestopostpartumdepressionquestionscrosssectionalstudy
AT chekenifaraaz clinicalaccuracyoflargelanguagemodelsandgooglesearchresponsestopostpartumdepressionquestionscrosssectionalstudy
AT leejennifer clinicalaccuracyoflargelanguagemodelsandgooglesearchresponsestopostpartumdepressionquestionscrosssectionalstudy
AT keimsarah clinicalaccuracyoflargelanguagemodelsandgooglesearchresponsestopostpartumdepressionquestionscrosssectionalstudy