Cargando…
Clinical Accuracy of Large Language Models and Google Search Responses to Postpartum Depression Questions: Cross-Sectional Study
Autores principales: | Sezgin, Emre, Chekeni, Faraaz, Lee, Jennifer, Keim, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520763/ https://www.ncbi.nlm.nih.gov/pubmed/37695668 http://dx.doi.org/10.2196/49240 |
Ejemplares similares
-
Clinical Advice by Voice Assistants on Postpartum Depression: Cross-Sectional Investigation Using Apple Siri, Amazon Alexa, Google Assistant, and Microsoft Cortana
por: Yang, Samuel, et al.
Publicado: (2021) -
The Current State of Mobile Apps Owned by Large Pediatric Hospitals in the United States: Systematic Search and Analysis on Google Play and Apple App Stores
por: Lieser, Tyler, et al.
Publicado: (2022) -
Language Preferences on Websites and in Google Searches for Human Health and Food Information
por: Singh, Punam Mony, et al.
Publicado: (2007) -
Performance of Large Language Models (ChatGPT, Bing Search, and Google Bard) in Solving Case Vignettes in Physiology
por: Dhanvijay, Anup Kumar D, et al.
Publicado: (2023) -
Google Translate: Can It Be a Solution for Language Barrier in Neuraxial Anaesthesia?
por: Şentürk, Emre, et al.
Publicado: (2021)